SECTION A

1 (long) Figure 1(a) shows the circuit for a source follower amplifier. The FET has small-signal parameters $g_{m}=5 \mathrm{mS}$ and $r_{d}=15 \mathrm{k} \Omega$. The source resistor $R_{S}=6 \mathrm{k} \Omega$, and the gate resistor $R_{G}=2 \mathrm{M} \Omega$.

Figure 1(a)
(a) Calculate the gain and output impedance of the circuit.

The small signal circuit can be drawn as:

equivalent to:

$\frac{V_{\text {OUT }}}{r_{d} \square R_{s}}=g_{m} V_{g s}$
$V_{i}=V_{\text {gs }}+V_{\text {OUT }}$
$\frac{V_{\text {OUT }}}{r_{d} \square R_{s}}=g_{m}\left(V_{1}-V_{\text {OUT }}\right)$
$\frac{V_{\text {OUT }}}{V_{i}}=\frac{g_{m} r_{d} \square R_{s}}{1+g_{m} r_{d} \square R_{s}}=0.955$

To find $R_{\text {OUT }}$ we short-circuit input, and apply signal at output. The equivalent circuit is:

$V=-V_{g s}$
$i=\frac{V}{r_{d} \square R_{s}}-g_{m} V_{g s}$
$R_{\text {OUT }}=\frac{V}{i}=\frac{r_{d} \square R_{s}}{1+g_{m} r_{d} / R_{s}}=191 \Omega$
(b) As a result of electrical interference, noise in the form of a small voltage of frequency 200 Hz is induced in the drain circuit of the FET. The presence of the 200 Hz noise can be modelled by the inclusion of a small signal source V_{N} in the drain circuit as shown in Figure 1(b).

Figure 1(b)

Draw the small signal equivalent circuit for determining the component of the output voltage that arises as a result of the noise source.

We use superposition with V_{i} short circuited. The equivalent circuit becomes:

$V_{0}=-V_{g s}$
$\frac{V_{0}}{R_{s}}=g_{m} V_{g s}+\frac{\left(V_{n}-V_{0}\right)}{r_{d}}$
$V_{0}=\frac{V_{n}}{r_{d}\left(\frac{1}{r_{d}}+\frac{1}{R_{s}}+g_{m}\right)}$
(c) Determine the maximum amplitude of V_{N} in Figure 1(b), if the noise component of the amplifier's output is not to exceed $30 \mu \mathrm{~V}$.
$\frac{V_{N}}{r_{d}\left(\frac{1}{r_{d}}+\frac{1}{R_{s}}+g_{m}\right)}<30 \times 10^{-6} V$
$V_{N}<2.34 m V$

2 (long) Consider the amplifier circuit in Figure 2.

Figure 2
(a) At a mid-band frequency where C_{1} may be considered an open circuit, calculate the value of R_{2} required to give a voltage gain of 50 dB between input and output. The operational amplifier may be considered ideal.

Voltage Gain $=20 \log _{10}\left(\frac{V_{o}}{V_{i}}\right)$
$\frac{V_{0}}{V_{i}}=10^{\frac{50}{20}}=316.3$

We ignore the capacitor for mid-band frequency. We get a standard inverting op-amp circuit. $\mathrm{V}_{\mathrm{N}} \approx 0$ comprising a "virtual earth":

Summing currents at - node:
$\frac{V_{i}-0}{R_{1}}=\frac{0-V_{0}}{R_{2}}$
$\frac{V_{0}}{V_{i}}=$ GAIN $=-\frac{R_{2}}{R_{1}}=-316.3$

Thus: $R_{2}=6.33 M \Omega$
(b) What is the mid-band input impedance of the circuit?

Virtual earth at V. node means that the input impedance is just $R_{1}=20 \mathrm{~K} \Omega$
(c) Calculate the value of C_{1} required to have a 3 dB high frequency cut-off of 6 kHz , i.e., where the circuit gain drops to $\frac{1}{\sqrt{2}}$ of its mid-band value.

Considering the effect of C_{1} on the gain:

GAIN $=\frac{-R_{2} \square C_{1}}{R_{1}}=-\frac{\frac{R_{2}}{R_{1}}}{\left(1+j \omega C_{1} R_{2}\right)}$
This drops to $\frac{1}{\sqrt{2}}$ of its mid-band value when $\omega C_{1} R_{2}=1$
$C_{1}=\frac{1}{2 \pi \cdot 6 \times 10^{3} \cdot 6.33 \times 10^{6}}=4.19 \mathrm{pF}$
(d) If a practical operational amplifier has an open loop voltage gain of 20,000 and an output impedance of 50Ω, but is otherwise ideal, what is the actual mid-band voltage gain in dB when the circuit drives a load impedance of 25Ω ?

Let us consider the effects of finite open loop gain and output impedance:

Since the load impedance is much smaller than the feedback impedance, the current through R_{2} may be neglected if summing currents at the output node

Summing currents at the V_{-}node:

$$
\begin{equation*}
\frac{V_{i}-V_{-}}{2 \times 10^{4}}=\frac{V_{-}-V_{0}}{6.33 \times 10^{6}} \tag{1}
\end{equation*}
$$

Summing currents at output:

$$
\begin{equation*}
\frac{V_{0}}{25} \approx i \approx \frac{2 \times 10^{4}\left(V_{+}-V_{-}\right)-V_{0}}{50} \tag{2}
\end{equation*}
$$

But $V_{+}=0$. Then:
$2 V_{0} \approx-2 \times 10^{4} V_{-}-V_{0}$
$V_{0} \approx-\frac{2 \times 10^{4}}{3} V_{-}$
$V_{-} \approx-\frac{3}{2 \times 10^{4}} V_{0}$

Substituting into (1)
$V_{0}=-\frac{\frac{633}{2}}{\left(\frac{3}{2 \times 10^{4}}+1+\frac{3 \times 633}{4 \times 10^{4}}\right)}=-302 V_{i}$
$\operatorname{GAIN}=20 \log _{10}(302)=49.6$

3 (short)

(a) What are copper loss and iron loss in the context of power transformers? Indicate how each of these corresponds to elements of a simple transformer equivalent circuit, and explain how each may be measured.

Copper loss: resistance of windings+ leakage inductance of windings.
Iron loss: Hysteresis in iron magnetisation curves causes power loss, and the shape also causes some apparent inductive loss. Eddy currents also cause similar effects. (distinguishable by changing frequency).

Copper losses

We can measure iron losses by working at the rated voltage, but with open circuit output (when copper losses $\rightarrow 0$)

We can measure copper losses at the rated current, but with short circuit output (when iron losses $\rightarrow 0$)
(b) A transformer consumes real and reactive power of 3 kW and 3 kVAR respectively when providing its full load of 70 kVA with a lagging power factor of 0.9 at 200 V and 50 Hz . Under these conditions it may be assumed that copper and iron losses are equal, that the
reactive power of the magnetising reactance and leakage reactances are equal, and that supply has very low impedance. Calculate the output voltage under no-load conditions.

Copper losses

Losses are split equally between copper and iron. For voltage calculations the iron losses may be neglected, since in the simple model they occur in parallel with the transformer input. The copper losses are then 1.5 kW and 1.5 kVAR .

At point A, total power $=(63+1.5) \mathrm{kW}$
Total reactive power $Q_{\text {Tot }}=(30.51+1.5) k V A R$
$S=\sqrt{P^{2}+Q^{2}}=72 k V A$
But $\mathrm{I}=350 \mathrm{~A}$
So $V A=\frac{72100}{350}=206 \mathrm{~V}$

This will be the no load voltage, since with no load the copper losses have no effect.

4 (short) A battery, modelled as a 12 V e.m.f. in series with a resistance of 2Ω, is being charged by a constant current source through the network shown in Figure 4. The multirange ammeter A_{m} used to measure the battery current drops a voltage of 1 V at full scale deflection on all ranges. Here it is set to its 10 A range and reads 1 A .

Figure 4
(a) What is the value of the constant current supply?

The ammeter A_{m}, dropping 1 V and on its full range 10 A , is modelled as a 0.1Ω resistance:

When A_{m} reads 1 A , for left hand circuit, the KVL gives:
$V_{i}=12+1(2+0.1)=14.1 V$
Thus, current in 50Ω resistor $=\frac{14.1}{50}=0.282 \mathrm{~A}$
So $\mathrm{I}=1.282 \mathrm{~A}$
(b) What would be the current into the battery if the ammeter was replaced with a wire of zero resistance?

With the ammeter replaced the circuit becomes

The new voltage V_{2} across the circuit can be derived from KCL:
$\frac{V_{2}}{50}+\frac{V_{2}-12}{2}=1.282$
$V_{2}=14 \mathrm{~V}$
Current through battery
$\frac{14-12}{2}=1 \mathrm{~A}$

5 (short) A small lab-scale crane lifts a mass of 2 kg at a speed of $0.5 \mathrm{~ms}^{-1}$. There are no motor power losses, and the crane's 50 Hz AC motor can be modelled as an inductance $L=50 \mathrm{mH}$ in series with a resistor R, where the latter models the conversion of the electrical input power to the mechanical output power of the motor.
(a) If the input current is 2 A when lifting this load, what is the power factor of this circuit?

$\mathrm{mgv}=2 \mathrm{~kg} \times 0.5 \frac{\mathrm{~m}}{\mathrm{~s}} \times 9.81=9.81 \mathrm{~W}$
$\operatorname{VARS}=I^{2} \omega L$
$=I^{2} .2 \pi .50 \times 10^{-3} .50 \mathrm{~Hz}$
$=62.8$
$V A=\sqrt{W^{2}+V A R^{2}}$
$=63.6$
Power Factor $=\frac{W}{V A}=\frac{9.81}{63.6}=0.154$
(b) If the crane is driven by a higher voltage AC supply through an ideal step-down transformer with a turns ratio of $30: 1$, what capacitance should be placed across the transformer's high voltage terminals to give the circuit a power factor of unity?

Transformer ratio $\frac{1}{30}$ means $\frac{2}{30} \mathrm{~A}=$ current in for 2 A out

Input voltage $=30 \times V_{i}$
As $\omega L=2 \pi .50 .50 \times 10^{-3}=15.7 \Omega$
$\omega L I=31.4 V$
IR $=4.9 \mathrm{~V}$
$V_{i}=\sqrt{31.4^{2}+4.9^{2}}=31.8 \mathrm{~V}$
$\cos \varphi=\frac{9.8}{2.318}=0.154$
$=31.8$
$\cos \varphi=\frac{9.8}{2 \times 31.8}=0.154$
Input voltage $=954 \mathrm{~V}$
A capacitor C in parallel across the input has
$C=2.2 \times 10^{-7} \mathrm{~F}$

Section B
6(a)(i)NMOS. Upper transistor acts to manic a resistive load (see lecture notes)

By inspection acts as invertor: Vout $=\bar{V}_{\text {in }}$
(ii) CMOS

NB. $Y=\bar{A} \cdot \bar{B}$ also accepted.
(b) For top transistor, $V_{G S}=V_{D S}$
see attached solution on characteristic

$V_{\text {in }}=V_{\text {Gs }}$	$V_{\text {out }}=V_{\text {os }}$	
0 V	10 V	$V_{\text {out }}$
2 V	7.5 V	10 V
4 V	5.9 V	
6 V	4.2 V	
8 V	2.4 V	

N.B. The slope of the $V_{O S}=V_{D S}$ is approximately the same as a 900Ω resistor (see lecture notes). A load line based on this with some explanation, would have been accepted as a reasonable approximation.
(c) Several reasons acceptable (2 for foll mows)
eeg. - only consumes power when. swinhing

- bunsistor is smaller them (resishorning
\qquad

NOTE: The graph in Figure 6(c) is reproduced here. You should use this to help you complete Question 6. You must attach this sheet to your answer.
$7(a)$

Start list sequence with $A=B=C=D=0$, and sequence with missing value eg. 0010
sequence 1
$A B C D$

0000
1000
1100
1110
1111
0111
0011
0001
then repeats
sequence 2
$A B C D$
0010
1001
0100
1010
1101
0110
$\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}$
then repents.

NAB. 16 varahons - all present
(b) Sequence 1

A	B	C	D	Output
0	0	0	0	0
1	0	0	0	1
1	1	0	0	2
1	1	1	0	3
1	1	1	1	4
0	1	1	1	5
0	0	1	1	6
0	0	0	1	7

$A B$

CD | 00 | 01 | 11 | 10 | |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | x | 2 | 1 |
| 01 | 7 | x | x | x |
| 11 | 6 | 5 | 4 | x |
| 10 | x | x | 3 | x |

So $0=\bar{A} \cdot \bar{D}$
$1=A \cdot \bar{B}$
$2=B \cdot C$
$3=C \cdot \bar{D}$
8. main movie 0×31; moves 0×31 lino $w \mathrm{wl}$ move FSR; moves (address) 0×31 into ~ 1 FER (10 set up widivect addressing ~ 2
call st; calls subrouhne labelled sr
decfFSR; decrements FSR (now ~ 1 pointrig © $0 x 30$)
cull st;
calls subroutine
~ 2
and sleep; ends programme
~ 1

Sr rrf INDF; rotates right FSR contours ~ 1 (effectwely \div ?)
movie 0x10; move 0xio ito w ~ 1
addwf INDF; add 10 to contents of FSR ~ 1
(ie. $\frac{\text { original no. }}{2}+16$ (decined)
return; return to main programme ~ 2
(a) contents of $0 \times 30=\frac{20}{2}+16=26(0 \times 1 \mathrm{~A})$
" " $0 \times 31=\frac{50}{2}+16=41(0 \times 29)$
" " $\omega=16(0 \times 10)$ as last time it is changed is i the end call of the subroutine
(b) main programme 8 cycles subroutrie S cycles.
subrounie called twice
\Rightarrow total ron time $=8+(2 \times 5)$ cycles

$$
\begin{array}{rlrl}
\text { Clock } & =20 \mathrm{mHz} & & =18 \times \text { sons } \\
\Rightarrow 1 \text { cycle } & =1 \text { period } & & =0.9 \mathrm{ps} \text { or } 900 \mathrm{~ns} . \\
& =\frac{1}{20 \times 10^{6}}=50 \mathrm{~ns} &
\end{array}
$$

$9(a)$ Inputs T, S, B Outputs M, A.

(b) 4 states $\Rightarrow 2$ bistables

State Allocator

State	x	y
0	0	0
1	0	1
2	1	0
3	1	1

(other allocations are obviously valid)
(c) State Transition Table:

(d) Outputs

$$
\begin{array}{cccc}
Q_{x} & Q_{y} & H & A \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array} \quad \Rightarrow H=\bar{Q}_{x} \cdot Q_{y}
$$

J_{x}

$$
J_{x}=S \cdot Q_{y}+T \cdot Q_{y}
$$

is $K_{x}=\bar{B} \cdot Q_{y}+\bar{T} \cdot \bar{S} \cdot \bar{Q}_{y}$

$J_{y} Q_{x} Q_{y}$	00	01	11	10	
00	0	0	0	0	
0	0	x	x	x	x
11	x	x	x	x	
10	1	0	1	1	

$B=0$

$$
J_{T} J_{y}=B \cdot \bar{Q}_{x}+T \cdot Q_{x}+\bar{S} \cdot Q_{x}
$$

$$
B=1
$$

$$
K_{y}=\bar{B} \cdot \dot{Q}_{x}+\bar{T} \cdot S \cdot \bar{Q}_{x}
$$

Section C
10 a) i)

Spherically symmetric
ii)

Racially symmetric
b)

i)

$$
\begin{aligned}
|\underline{E}| & =\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \\
\underline{E} & =\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{10 \times 10^{-6}}{\left(10^{-2}\right)^{2}}(-\underline{i})+\frac{3 \times 10^{-6}}{\left(10^{-2}\right)^{2}} j\right) \\
& =-898 i+269 j \mathrm{mV} / \mathrm{m}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\underline{E} & =q \underline{E} \\
& =-2 \times 10^{-6}(-898 i+269 j) \times 10^{6} \\
& =1800 i-539 j \mathrm{~N}
\end{aligned}
$$

11 a)

Ampère's Law $H_{y l y}+H_{i} L_{i}=N I$

$$
H_{y}=\frac{N I-H_{i} L_{i}}{l_{g}}
$$

Flue continuity $\quad B_{g} A=B_{i} \not A^{*}$ area

$$
B_{y}=\mu_{0} H_{y}
$$

$$
\begin{aligned}
\Rightarrow \quad B_{i} & =\frac{\mu_{0} N I}{l_{y}}-\mu_{0} \frac{L_{i}}{l_{y}} H_{i} \\
& =\frac{4 \pi \times 10^{-7} \times 400 \times 4}{2 \times 10^{-3}}-\frac{4 \pi \times 10^{-7} \times 2 \pi \times 0.2}{2 \times 10^{-3}} \mathrm{Hi}_{i} \\
& =1.005-7.9 \times 10^{-4} \mathrm{Hi}_{i}
\end{aligned}
$$

Drawing load hie on curve in data book

$$
\Rightarrow B_{i} \sim 0.9 T
$$

b) Faraday

Since 10 worn coil is small writ wean of air gap, neglect fringing effect.

$$
\begin{aligned}
\operatorname{emf} & =(-) \frac{d \phi}{d t} \\
& =N \frac{\Delta \phi}{\Delta t}=\frac{10 \times B \times A}{\Delta t} \\
& =\frac{10 \times 0.9 \times\left(10^{-3}\right)^{2}}{2 \times 10^{-3}} \\
& =4.5 \mathrm{mV}
\end{aligned}
$$

12 a) i) Solid area of pye $=\pi\left(r_{b}^{2}-r_{a}^{2}\right)$

$$
\Rightarrow J=\frac{I}{\pi\left(r_{b^{2}}-r_{a}^{2}\right)}
$$

ii)

Ampere's Law

$$
\begin{aligned}
\oint \underline{B} \cdot d I=p_{0} I^{\prime} & \left(\text { where } I^{\prime}\right. \text { is } \\
& \text { current } \\
& \text { enclosed by } \\
& \text { line of } \\
& \text { utegation }
\end{aligned}
$$

for path shown

$$
\begin{aligned}
& \left|\underline{B r}_{r}\right| 2 \pi r=\mu_{0} I^{\prime} \\
& \left|\underline{B r}_{r}\right|=\frac{\mu_{0} I^{\prime}}{2 \pi r}
\end{aligned}
$$

For two simple cases

$$
\begin{aligned}
& r<r_{a}, I^{\prime}=0 \Rightarrow\left|\underline{B_{r}}\right|=0 \\
& r>r_{b}, I^{\prime}=I \Rightarrow\left|\underline{B_{r}}\right|=\frac{\mu \cdot I}{2 \pi r}
\end{aligned}
$$

For $r_{a}<r_{b} \Gamma_{b}$, reed to calculate exclosedcurrent

$$
\begin{aligned}
d I^{\prime} & =J 2 \pi r d r \\
& =\frac{2 \pi /}{\not K}\left(r_{b}^{2}-r_{a}^{2}\right) \\
I^{\prime} & =\frac{2 r}{\left(r_{b}^{2}-r_{a}^{2}\right)} \int_{r_{a}}^{r} r d r \\
& =\frac{2 I}{\left(r_{b}^{2}-r_{a}^{2}\right)}\left[\frac{r^{2}}{2}\right]_{r a}^{r}=\left(\frac{r^{2}-r_{a}^{2}}{r_{b}^{2}-r_{a}^{2}}\right) I
\end{aligned}
$$

$$
\Rightarrow \text { for } r_{a}<r<r_{b} \quad\left|\underline{B_{r}}\right|=\frac{p_{0}}{2 \pi r}\left(\frac{r^{2}-r_{a}^{2}}{r_{b}^{2}-r_{a^{2}}}\right) I
$$

b)

NB wires attract due to self viduced magnetic force so Fray direction \uparrow

For sprig constant k

$$
\begin{aligned}
m g & -F_{\text {mag }}=k r \\
F_{\text {may }} & =m g-k r \\
& =10 \times 10^{-3} \times 9.81-30 \times 10^{-3} \\
& =0.0681 \mathrm{~N} .
\end{aligned}
$$

From Ampere's law

$$
\begin{aligned}
& B_{r} 2 \pi r=\mu_{0} I \\
& B_{1}=\frac{\mu_{0} I}{2 \pi r}
\end{aligned}
$$

The two cols are eqpowalet to two parallel wis, each of length $l=\pi d$, separated by 1 mm

$$
\begin{aligned}
F_{\text {may }} & =B_{r} \cdot I \cdot I \\
& =\frac{\mu_{0} I}{2 \pi r} \cdot I \cdot \not Y d=\frac{\mu_{0} I^{2} d}{2 r} \\
\Rightarrow I^{2} & =\frac{2 r}{\mu_{0} d} F_{\text {may }} \\
& =\frac{2 \times 10^{-3}}{4 \pi \times 10^{-7} \times 0.05} \times 0.0681 \\
& =2167 \mathrm{~A}^{2} \\
\Rightarrow I & =46.6 \mathrm{~A}
\end{aligned}
$$

