2012 PARTIA PAPER 4 SECTION A MICHAEL KELLY
CRIBS
1: (a) Show: $\tanh ^{-1} x=0.5 \ln [(1+x) /(1-x)] \quad(-1<x<+1)$
Put $y=\tanh ^{-1} x: \quad x=\tanh y=\left(e^{y}-e^{-y}\right) /\left(e^{y}+e^{-y}\right)$
With $\left.s=e^{y} \quad(s-1 / s)\right) /(s+1 / s)=x \quad s^{2}=(1+x) /(1-x)$
Take logs: $\quad y=\tanh ^{-1} x=0.5 \ln [(1+x) /(1-x)]$
(b) Show that $\cosh ^{-1} x=\ln \left[\left(x+\sqrt{(} x^{2}-1\right)\right] \quad(x \geq 1)$

Put $y=\cosh ^{-1} x \quad x=\cosh y=\left(e^{y}+e^{-y}\right) / 2$
With $s=e^{y} \quad 2 x=(s+1 / s) \quad s^{2}-2 s x+1=0 \quad s=0.5\left[x \pm \sqrt{ }\left(x^{2}-1\right)\right]$ $y=\cosh ^{-1} x=\ln \left[\left(x+\sqrt{\left(x^{2}-1\right)}\right]\right.$

2: $z^{4}=r^{4} e^{i 4 \theta} \quad \sqrt{z}=r^{1 / 2} e^{i \theta / 2} \quad$ and $\quad \ln (z)=\ln r+i \theta$
$\mathrm{P}(\mathrm{i})=0=\mathrm{P}(-\mathrm{i}) \quad$ Divide by $\left(\mathrm{z}^{2}+1\right)$
So $P(z)=\left(z^{2}+1\right) \quad\left(z^{2}+5 z+6\right)$
The zeroes are $i,-i,-2$, and -3
3: Vector form of plane: $\mathbf{r} \cdot(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{D}$. Vector normal to plane is $\mathbf{n}=(A, B, C)$
Eqn of line through $(1, \mathrm{~m}, \mathrm{n})$ and perpendicular to the plane is

$$
\mathbf{r}=(1, \mathrm{~m}, \mathrm{n})+\mathrm{t}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})
$$

Meets plane when $r \cdot(A, B, C)=1 A+m B+n C+t(A, B, C) \cdot(A, B, C)=D$
Or: $\mathrm{t}=[\mathrm{D}-(1 \mathrm{~A}+\mathrm{mB}+\mathrm{nC})] /\left[\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}\right]$
The point on the plane N where this line meets the plane is

$$
(1, \mathrm{~m}, \mathrm{n})+\left\{[\mathrm{D}-(1 \mathrm{~A}+\mathrm{mB}+\mathrm{nC})] /\left[\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}\right]\right\}(\mathrm{A}, \mathrm{~B}, \mathrm{C})
$$

The length of $\mathrm{PN}=\left\{[\mathrm{D}-(\mathrm{lA}+\mathrm{mB}+\mathrm{nC})] /\left[\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}\right]\right\} \vee \sqrt{ }\left[\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}\right]$
Particular question: $(1, \mathrm{~m}, \mathrm{n})=(2,-1,3) \quad(A, B, C)=,(2,-2,-1)$ and $D=9$
$\mathrm{T}=[9-(4+2-3)] / 9=2 / 3 \times 3=2$

Q4
a) i) $\operatorname{det}\left(Q Q^{t}\right)=\operatorname{det}(I)=1 \quad \operatorname{det} \underline{\underline{\omega}}=\operatorname{det} \theta^{0}$

$$
\Rightarrow(\operatorname{det}(\otimes))^{2}=1 \quad \Rightarrow \quad \operatorname{det} \theta= \pm 1
$$

$\Rightarrow \underline{u}_{i} \underline{u}_{j}=s_{i j}$ ie colvms are an orthonormed set.
(Alno trie for rows).

$$
\text { b) }(i) \operatorname{det}\left(A-\lambda \frac{I}{I}\right)=\operatorname{det}\left(\begin{array}{ccc}
3 / 5-\lambda & 0 & -4 / 5 \\
0 & 1-\lambda & 0 \\
-4 / 5 & 0 & -3 / 5-\lambda
\end{array}\right)=0
$$

ExPAND By $2^{\text {nd }}$ rad $\Rightarrow(1-\lambda)[(3 / 5-\lambda)(-3 / 5-\lambda)-16 / 25]=0$

$$
(1-\lambda)\left[\lambda^{2}-9 / 25-16 / 25\right]=0
$$

$$
(1-\lambda)\left(\lambda^{2}-1\right)=0 \quad \lambda=1,1,-1
$$

Repeuted e-value no expect eigen-plare!
(ii) A symmetric $\Rightarrow e$-values are real, e-vectors for dist-inct e-vals are perpendirular \& repaubed e-vals (e-plone) can choose
(iii) A correspinds bo reflection in a plave with nomal $(1,0,2)^{t}$ (ie evector corresionling to $\left.\lambda=-1\right)$, other tho e-vulues are both unit.

$$
\begin{aligned}
& \text { e-vectors ho he perpendicular. } \\
& \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)=0 \Rightarrow \operatorname{her}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)=0 V \quad\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\lambda=1}{(\text { REREATCO })} \Rightarrow\left(\begin{array}{ccc}
-2 / 5 & 0 & -4 / 5 \\
0 & 0 & 0 \\
-4 / 5 & 0 & -8 / 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad x+2 z=0 \quad \& y=\text { angthing } \\
& \begin{array}{c}
\text { eigen pline - choose ter e-vectors } \Rightarrow\left(\begin{array}{l}
0 \\
1 \\
\text { (nekre non-vnique) }
\end{array}\right) \&\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right) \\
\hline
\end{array} \\
& \hat{\underline{\lambda}=-1} \Rightarrow\left(\begin{array}{ccc}
8 / 5 & 0 & -4 / 5 \\
0 & 2 & 0 \\
-4 / 5 & 0 & 2 / 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{c}
+1 \\
0 \\
+2
\end{array}\right)
\end{aligned}
$$

Q5
Q4) a)

$$
\begin{aligned}
& \text { fa) } \frac{d^{2} y}{d x^{2}}=k \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
& \Rightarrow \frac{d z}{d x}=k \sqrt{1+z^{2}} \\
& \int_{0}^{z} \frac{1}{\sqrt{1+z^{2}}} d z=\int_{0}^{x} k d x \\
& \text { DATABCon } \Rightarrow\left[\operatorname{sixh}^{-1}(z)\right]_{0}^{z}=[k x]_{0}^{x} \\
& \Rightarrow \sinh ^{-1}\left(\frac{d y}{d x}\right)=k x
\end{aligned}
$$

REARRANSE $\Rightarrow \frac{d y}{d x}=\sinh (k x)$
Intesmate $\quad y=\frac{1}{k} \cosh (h x)+$ const.

$$
y=0 e x=0 \Rightarrow y=\frac{1}{k}(\cosh (k x)-1) \quad \begin{aligned}
& k \text { chasen to fot } \\
& \text { thaght }\left(x_{1}, y_{1}\right)
\end{aligned}
$$

b)
 Pythagores $d s^{2}=d x^{2}+d y^{2}$

$$
\Rightarrow \frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

$$
\begin{aligned}
& \begin{aligned}
& \frac{d s}{d x}=\sqrt{1+\sin ^{2}(k x)}=\cosh (k x) \\
& \Rightarrow s=\frac{1}{k} \sinh (k x)+\operatorname{const} \\
& s=0 c x=0 \Rightarrow s=\frac{1}{k} \sinh (h x) \\
& \text { Length }=\frac{2}{k} \sinh \left(k x_{1}\right)
\end{aligned}
\end{aligned}
$$

c) i) $y_{1} \ll x_{1} \Rightarrow|d y| d x \left\lvert\, \ll 1 \Rightarrow \frac{d^{2} y}{d x^{2}}=k\right.$
(ii)

$$
\begin{aligned}
& \frac{d y}{d x}=k x+A \Rightarrow y=\frac{1}{2} k x^{2}+A x+B \\
& y=0 e x=0 \& \operatorname{do} / d x=0 \Rightarrow A=B=0 \Rightarrow y=\frac{1}{2} k x^{2}
\end{aligned}
$$

(iii) $y=\frac{1}{k}(\cosh ($ kex $)-1)=\frac{1}{k}(\underbrace{\left[1+\frac{(k x)^{2}}{2!}+o\left(x^{4}\right)\right.}_{\text {DATABODR. }}]-1]=\underline{\underline{\frac{1}{2} k}}+0\left(x^{4}\right)$

2012 Part IA Mathematical Methods
6 (a) Step response $=$ impulse response

$$
\Rightarrow \text { Step resp }=-\cos t+A
$$

System at rest before $t=0 \Rightarrow A=1 \Rightarrow$ step repose $=1$-cost

(b) Response is $y(t) \begin{cases}=0 & t \leqslant 0 \\ =\sin t & 0<t \leqslant \pi \\ =\sin t+\sin (t-\pi) & t>\pi\end{cases}$

And $\sin (t-\pi)=\sin t \cos \pi-\cos t \sin \pi=-\sin t$
\therefore Response is $y=\sin t \quad 0<t<\pi$

$$
=0 \quad \text { otherwise }
$$

Examiner's Note
345 Candidates 344 attempted this question. Average 68%. Well done, in general. Only common error was failure to realise that the answer to part (b) has different forms for different time intervals. Some candidates tried to do part (b) by convolution and sank wittiont trace.
7. (a)

Series in databook with $T=2 \pi \Rightarrow \omega_{0}=\frac{2 \pi}{2 \pi}=1$

$$
\therefore f(t)=\frac{1}{\pi}+\cos t+\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m+1} \cos 2 m t}{4 m^{2}-1}
$$

(b)

$$
\begin{aligned}
a_{6} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos 6 t d t=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos t \cos 6 t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{1}{2}(\cos 7 t+\cos 5 t) d t=\frac{1}{\pi}\left[\frac{\operatorname{sen} 7 t}{7}+\frac{\sin 5 t}{5}\right]_{0}^{\pi / 2} \\
& =\frac{1}{35 \pi}\left[\begin{array}{c}
5 \sin \\
-1 \\
-1
\end{array}+7 \sin \frac{5 \pi}{2}\right]=\frac{2}{35 \pi}
\end{aligned}
$$

$$
\text { Part (a) } \Rightarrow \text { (with } m=3) \quad \text { corf }=\frac{2}{11} \frac{(-1)^{4}}{4 \cdot 3^{2}-1}=\frac{2}{35 \pi}
$$

(C) (i) f is an even function \Rightarrow no sines
(ii) f is continuous but discontinuous slope \Rightarrow coff $=\left(\frac{1}{u^{2}}\right)$
(d)

Either Symmetric abort $\pi / 2$ \Rightarrow only terms with this symmetry

$$
\Rightarrow \quad \cos t, \cos 3 t, \cos 5 t, \text { etc }
$$ oust present

Alter
$g(t)$ has period $\pi \Rightarrow$ only terms with period π.
Examiner' Note: 343 attempts Average 64\% All parts quite well done except for part (d) -the sting in the
8. On one round

$$
\begin{aligned}
P(\text { win }) & =P(2 H)+P(2 T) \\
& =\frac{2}{5} \cdot \frac{3}{5}+\frac{3}{5} \cdot \frac{2}{5}=\frac{12}{25} \\
P(\text { loss }) & =1-P / \text { win })=\frac{13}{25}
\end{aligned}
$$

For $\frac{1}{c} 1$ stake

$$
\begin{aligned}
\text { Expected Return } & =2 \times \frac{12}{25}+0 \times \frac{13}{25} \quad\left(=\text { mean }=\sum x p(x=x)\right) \\
& =\frac{24}{25} \Rightarrow \text { expected tors }=4 p
\end{aligned}
$$

After 10 rounds, expected loss $=40 p$
Examiner's Note: 335 attempts, average 66%
Average of 66% came from half the candidates producing perfect solutions and the other half getting nowhere. To those who expected to lose more than $\mathbb{E} 10$, I would like to incite you to come and play!

Commonest errors:
(i) many candidates thought average of integers must be an integer
(ii) Some thought "expected" \Rightarrow most probable N.B. mean (x) is usually dented $E[x]$ ie mean $=$ expectation.
Two candidates earned my undying admiration by evaluating all possible cases and conduced, after 3 pages, that

$$
\begin{aligned}
& \text { expected loss }=\sum_{w=0}^{10}{ }_{10} C_{w}\left(\frac{12}{25}\right)^{w}\left(\frac{13}{25}\right)^{10-w}(10-2 w)=40 p \\
& \text { Awe some! }
\end{aligned}
$$ Awesome!

9(a) $\left.L\left\{\int_{0}^{t} f(\tau) g(t-\tau) d \tau\right\}=F(s) G / s\right) \leftarrow$ from databok
(b) Let $y=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \Rightarrow Y(s)=F(s) G(s)$

$$
\begin{array}{ll}
& L(t)=\frac{1}{s^{2}} \quad L\left(e^{-2 t}\right)=\frac{1}{s+2} \\
\therefore \quad & Y=\frac{1}{s^{2}(s+2)}=\frac{A s+B}{s^{2}}+\frac{C}{s+2}
\end{array}
$$

Cover up mile $s=-2 \Rightarrow C=\frac{1}{4}$

$$
\because \quad . \quad . \quad s=0 \Rightarrow B=\frac{1}{2}
$$

Put $s=1 \Rightarrow \frac{1}{3}=A+B+\frac{C}{3}=A+\frac{1}{2}+\frac{1}{12}$

$$
\left.\begin{array}{ll}
& \Rightarrow \quad A^{3}=\frac{4-6-1}{12}=-\frac{3}{12}=-\frac{1}{4} \\
\therefore & y(s)=-\frac{1}{4 s}+\frac{1}{2 s^{2}}+\frac{1}{4(s+2)} \\
\Rightarrow \quad y(t)=\frac{t}{2}-\frac{1}{4}+\frac{1}{4} e^{-2 t} \quad(t \geqslant 0 \quad 0 \quad \text { othemise }
\end{array}\right)
$$

(c) $L\left(\frac{d^{n} y}{d t^{n}}\right)=s^{n} Y-s^{n-1} y(0)-s^{n-2} \dot{y}(0) \ldots-y^{(n-1)}(0)$

So taking L.T. of both sides of a lirear, condart carff differential equation yiolds

$$
\begin{aligned}
& \text { ential equation yields } \\
& \text { polywomial }(s) Y=\text { prlynomid from b.c. }(s)+L \text { (rigut hand side) }
\end{aligned}
$$

Solve for Y, then incert.
(d) From part (b)

$$
y(s)=\frac{1}{s^{3}+2 s^{2}} \quad \Rightarrow \quad s^{3} y+2 s^{2} y=1
$$

Now $L\left(\frac{d^{3} y}{d t^{3}}\right)=s^{3} y-s^{2} y(0)-s \dot{y}(0)-\ddot{y}(0)$

$$
\begin{gathered}
L\left(\frac{d^{2} y}{d t^{2}}\right)=s^{2} y-s y(0)-\dot{y}(0) \\
\Rightarrow L\left(\frac{d^{3} y}{d t^{3}}+\frac{2 d^{2} y}{d t^{2}}\right)=\left(s^{3}+2 s^{2}\right) y-y(0) s^{2}-s(\dot{y}(0)+2 y(0)) \\
-\ddot{y}(0)-2 \dot{y}(0)=0
\end{gathered}
$$

Comparing this with $\left(s^{3}+2 s^{2}\right) y-1=0 \Rightarrow$ satisfies eq". and $\Rightarrow y(0)=0 \quad \dot{y}(0)+2 y(0)=0 \quad \ddot{y}(0)+2 \dot{y}(0)=1$

$$
\Rightarrow y(0)=\dot{y}(0)=0 \quad \ddot{y}(0)=1
$$

Examiner's Note: 343 attempts, Average 78\% Candidates did very well on this question - well done. Some candidates tackled part (d) by substituting the Solution from (b) into the differential equation. Some of these got into trouble having said

$$
\begin{aligned}
& \text { into trouble having said } \\
& \frac{1}{2 s^{2}}-\frac{1}{4 s}+\frac{1}{4(s+2)} \rightarrow \frac{t}{2}-H(t)+\frac{1}{4} e^{-2 t}=y
\end{aligned}
$$

then $\frac{d y}{d t}=\frac{1}{2}-\delta(t)-\frac{1}{2} e^{-2 t}$ \& didn't know what to do with the δf_{n}.

Commonest error was net to realise that a third order differential equation needs three b.c.'s.

10
(a) Rate of change with distance in direction n

$$
=\frac{d f}{d s}=\underline{u} \cdot \nabla f \text { provided } \underline{u} \text { unit vector. }
$$

In this case

$$
\text { this case } \quad \nu f=\left(2 e^{x}-y-1,-x-1+\frac{2}{(y+1)^{3}}\right)
$$

$$
\underline{n}=\frac{(1,2)}{\sqrt{5}} \Rightarrow \frac{d f}{d s}=\frac{(1,2)}{\sqrt{5}} \cdot(1,1)=\frac{3}{\sqrt{5}}
$$

(b)

$$
\frac{d f}{d s}=\underline{n} \cdot \nabla \cdot \square=|\underline{\prime \prime}||\nabla f| \cos \theta
$$

\Rightarrow need same $\cos \theta$
$(1,2) \quad(1,1)=$ of \quad By symmetry this is in dir! $(2,1)$
liter

$$
\underline{n=\frac{(a, b)}{\sqrt{a^{2}+b^{2}}} \Rightarrow \frac{a+b}{\sqrt{a^{2}+b^{2}}}}=\frac{3}{\sqrt{5}}
$$

$$
\begin{gathered}
\Rightarrow 5\left(a^{2}+b^{2}+2 a b\right)=9\left(a^{2}+b^{2}\right) \Rightarrow 4 a^{2}-10 a b-4 b^{2}=0 \\
\Rightarrow 2\left(\frac{a}{b}\right)^{2}-5\left(\frac{a}{b}\right)+2=0 \Rightarrow\left(\frac{2 a}{b}-1\right)\left(\frac{a}{b}-2\right)=0 \\
\Rightarrow \frac{a}{b}=\frac{1}{2} \text { or } 2
\end{gathered}
$$

Examine's Note Attempts 344, Average 65\%
Most candidates knew what to do, although a disappointly large number didn't normalise n. Some normalised ∇f !

Part (b) needs quite a bit of thought \& stumped a lot of candidates.

Section C

James Matheson

11 (a) There are 2^{48} or roughly 2.5×10^{14} possible MAC addresses. Even if only one byte of memory is required per table entry, this would require 2.5 TB of memory; clearly impractical! A hash table would require much less memory, typically only enough per entry (100) plus some spare to make collisions less likely, say 256 in all, i.e. a factor of 10^{12} less.
(b) We clearly need to avoid using the most significant 24 bits since these will be identical for all devices made by the same manufacturer, leading to collisions in the hash table. This leaves the least significant 24 bits of which the least significant N are most likely to be random, assuming that the manufacturer allocates addresses sequentially. If we want a hash table with 256 entries as suggested in (a) above, this implies using the least significant 8 bits. Any N less than 7 will results in unresolvable collisions and anything much larger than 9 or 10 will be a poor trade-off between wasting memory and reducing collisions, though how much this matters depends on the size of each entry in the hash table.

12
(a)

```
    struct component {
    float cost;
    float total;
};
```

(b)There are 1000 item totals, 12 monthly totals and one year total. So, as the totals accumulate, the year total will be greatest, followed by the monthly totals, and the per-item totals will generally be the smallest. As soon as any particular total gets 2^{23} times larger than the smallest quantity being added (a penny), i.e. larger than 2^{23} pence or about 80,000 pounds, individual pence will no longer be added. And once a total exceeds 2^{23} times an item value, adding the item will have no effect on the total. This is because the mantissa of the sale value has to be shifted 23 bits to the right to get equal-exponent addition. This problem is going to affect the year total first, then the monthly totals and only at most a few of item totals, which is consistent with the accountant's findings.

