ENGINEERING TRIPOS PART IB

Friday 5 June 1998

9 - 11

Paper 7

MATHEMATICAL METHODS

Answer not more than four questions.

Answer at least one question from each section.

The approximate number of marks allocated to each part of a question is indicated in the right margin.

Answers to questions in each section should be tied together and handed in separately.

(TURN OVER

SECTION A

Answer at least one question from this section.

1 (a) Show that the partial differential equation,

$$\alpha \frac{\partial^2 \phi}{\partial x^2} = \frac{\partial \phi}{\partial t}$$

where α is a constant, can be transformed into the ordinary differential equation

$$\frac{d^2\phi}{d\eta^2} + \eta \frac{d\phi}{d\eta} = 0$$

by the change of variable $\eta = \eta(x,t) = \frac{x}{\sqrt{2\alpha t}}$. [8]

(b) Use the transformation,

$$x = ar \cos \theta$$

$$y = br\sin\theta$$

where a and b are constants, to evaluate,

$$\iint\limits_{R} x \, y \, dx \, dy$$

where R is the region $x \ge 0$, $y \ge 0$, within the ellipse,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. ag{12}$$

A long metal bar has a cross-section defined by the lines y = 0, y = x, x = 1. Ohmic heating produces a temperature distribution in the bar which is given (in dimensionless form) by

$$T = y(x-y)(1-x)$$

and which does not vary along the length of the bar. Heat flow in the bar obeys Fourier's law of heat conduction, $q = -\lambda \nabla T$, with constant thermal conductivity λ .

- (i) Find the position and magnitude of the maximum value of T and derive an expression for the heat flux vector \mathbf{q} .
- (ii) By evaluating a suitable integral over the surface of the bar, calculate the total heat loss per unit length from the bar. [8]
- (iii) Verify this result by using Gauss's theorem. [7]

[5]

3 Consider the partial differential equation

$$c^{2} \frac{\partial^{2} \phi}{\partial x^{2}} = \frac{\partial^{2} \phi}{\partial t^{2}} + 2k \frac{\partial \phi}{\partial t} + k^{2} \phi$$

where c and k are positive constants. Given (do not prove) a solution

$$\phi(x,t) = e^{-kt} [F(ct-x) + G(ct+x)]$$

where F and G are arbitrary functions, explain the significance of the characteristic lines $dx/dt = \pm c$ and the constant k.

Using the method of separation of variables, and not otherwise, find the solution of the differential equation for $0 \le x \le 1$ and $t \ge 0$ which satisfies the boundary conditions,

$$\phi = 0$$
 at $x = 0$ for $t \ge 0$

$$\phi = 0$$
 at $x = 1$ for $t \ge 0$

$$\phi = 5\sin(2\pi x)$$
 for $0 \le x \le 1$ at $t = 0$

$$\frac{\partial \phi}{\partial t} + k\phi = 0$$
 for $0 \le x \le 1$ at $t = 0$.

[5]

SECTION B

Answer at least one question from this section.

For an equation of the form f(x) = 0, derive the Newton-Raphson iteration formula,

$$x_{n+1} = x_n - \frac{f(x_n)}{g(x_n)}$$

where $g(x_n) = df/dx$ at $x = x_n$. [5]

If $x = \alpha$ is a root of f(x) = 0 and ε_n is the error at the n^{th} iteration, then $x_n = \alpha + \varepsilon_n$. By expanding both $f(x_n)$ and $g(x_n)$ as Taylor series about the point $x = \alpha$, show that the Newton-Raphson method converges according to,

$$\varepsilon_{n+1} = C \varepsilon_n^2 + \dots$$

and find an expression for the coefficient \mathcal{C} .

[8]

Using the Newton-Raphson method, find the root of

$$f(x) = x^4 - 7x^3 + 11x^2 + 7x - 12$$

in the interval $0 \le x \le 2$ from a first guess of x = 1.5. [7]

(TURN OVER

5 A quadratic polynomial of the form

$$y = \sum_{k=0}^{2} a_k x^k$$

is to be fitted to N data points $(X_i, Y_i, i = 1, 2, ..., N)$ in such a way as to minimise the function

$$q = \sum_{i=1}^{N} (y_i - Y_i)^2$$

where $y_i = \sum_{k=0}^{2} a_k X_i^k$.

(i) Show that the polynomial coefficients can be determined by solving the simultaneous equations,

$$\sum_{i=1}^{N} \left(a_0 X_i^k + a_1 X_i^{k+1} + a_2 X_i^{k+2} \right) = \sum_{i=1}^{N} Y_i X_i^k, \qquad k = 0, 1, 2.$$
 [6]

(ii) Such a quadratic polynomial is to be fitted to the following data points:

Set up the equations for the coefficients in matrix form and solve them using Gaussian elimination. [14]

SECTION C

Answer at least one question from this section.

6 Using the result

$$\lim_{a\to\infty}\int_{-a}^{+a}e^{j\omega t}d\omega = 2\pi\delta(t)$$

show that, if $F(\omega)$ is the Fourier transform of f(t), then the *inverse* Fourier transform is given by

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega.$$
 [7]

A signal f(t) has Fourier transform $F(\omega)$, where,

$$F(\omega) = e^{a\omega} \qquad \omega < 0$$

$$F(\omega) = e^{-a\omega} \qquad \omega \ge 0$$

with a > 0. Using the above result, show that,

$$f(t) = \frac{a}{\pi(a^2 + t^2)}.$$
 [6]

The cross-correlation, $R(\tau)$, of two real functions $g_1(t)$ and $g_2(t)$, is given by,

$$R(\tau) = \int_{-\infty}^{\infty} g_1(t) g_2(t+\tau) dt.$$

If g_1 and g_2 are even functions of time, show that $R(\tau)$ is equivalent to the convolution of g_1 and g_2 . Hence find $R(\tau)$ for the functions:

$$g_1(t) = \frac{a}{\pi(a^2+t^2)}, \qquad g_2(t) = \frac{b}{\pi(b^2+t^2)}.$$
 [7]

(TURN OVER

7 The sampling function,

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$$

can be written as a Fourier series in the form,

$$s(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{jn\omega_0 t}$$

where $\omega_0 = 2\pi/T$. If a signal f(t) is sampled every T seconds using this sampling function, the sampled signal $f_s(t)$ is represented by $f_s(t) = s(t) f(t)$.

Using the Fourier series expression for s(t), show that the Fourier transform of the sampled signal is given by,

$$F_s(\omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} F(\omega - n\omega_0).$$
 [6]

With reference to this result, explain the meaning of the terms *aliasing* and *Nyquist frequency* when applied to a sampled signal. [5]

The discrete Fourier transform (DFT) for a set of N samples $\{f_0, f_1, ..., f_{N-1}\}$ is defined by,

$$F_k = \sum_{n=0}^{N-1} f_n e^{-jkn 2\pi/N}$$
.

Form the DFT of the sequence {0, 1, 0, -1} and verify the discrete version of Parseval's theorem,

$$\sum_{n=0}^{N-1} |f_n|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |F_k|^2.$$
 [9]

8 X_1 and X_2 are independent random variables with means μ_1 and μ_2 , and standard deviations σ_1 and σ_2 respectively. If Y is a random variable defined by $Y = aX_1 + bX_2$ (where a and b are constants), show that its mean μ_Y and standard deviation σ_Y are given by,

$$\mu_{Y} = a\mu_{1} + b\mu_{2}$$

$$\sigma_{Y} = \sqrt{a^{2}\sigma_{1}^{2} + b^{2}\sigma_{2}^{2}}$$
[8]

The manager of a fleet of 20 taxicabs knows that the annual mileage and service cost per car are both random variables with normal distributions $N(\mu, \sigma)$:

The cost of fuel is 10p per mile. The most expensive taxi in the fleet has an annual mileage of 31400 miles and a service cost of £1590. Adopting a suitable criterion for significance, establish whether or not these figures are individually statistically significant.

Stating any further assumptions, comment on the significance of the combined cost of mileage and servicing. [6]

-

[6]

END OF PAPER

