ENGINEERING TRIPOS PART IB

Tuesday 1 June 1999 2to 4

Paper 4

FLUID MECHANICS AND HEAT TRANSFER

Answer not more than four questions.
Answer at least one question from each section.

All questions carry the same number of marks.

Answers to questions in each section should be tied together and

handed in separately.

The approximate number of marks allocated to each part of a

question is indicated in the right margin.
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SECTION A

1 A centrifugal atomiser is shown in Fig. 1. A highly viscous fluid is supplied
from above the centre of a spinning disk and is centrifuged towards the edge of the
disk in the form of a thin film. The film is sufficiently thin for the pressure in the
fluid to be taken as uniform and equal to atmospheric pressure, while the fluid is
sufficiently viscous to ensure that the flow is laminar and that the radial component of
velocity, v,, is much less than the local disk speed, Qr. (Here Q is the disk angular
velocity and r is the radial coordinate.) In addition, it may be assumed that the
circumferential velocity of the fluid, ve, is everywhere equal to the local disk speed,

and that gravitational forces are negligible.
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Fig. 1 A centrifugal disk atomiser

(a) Apply Newton’s second law of motion to the small element of fluid
shown in Fig. 1, and show that,

t(z+&) -1(z) = ~(p&)Q*r)

where T is the radial shear stress, z is the distance measured from the surface of the
disk and & is the thickness of the element of fluid.
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(Each fluid particle tfollows a near-circular path when viewed from above, and so you
may assume that the radial acceleration of a typical fluid particle is simply its

centripetal acceleration.)

(b) The fluid is Newtonian and so 7 is related to v, in the usual way.
Show that the radial velocity distribution in the fluid is given by

2 2
Vr:pQ r{hz—i—}
u 2

where [ is the viscosity of the fluid and A(r) is the thickness of the film at radius r.

(Hint; the surface boundary condition at z = his 7=0.)

(c) Derive an expression for the volumetric flow rate, Q , and show that A

varies as P23,
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2 (a) The water flow over the spillway shown in Fig. 2 has uniform velocity
at sections 1 and 2, and the fluid depths at these points are 4; = 5m and A; = 0.7m.

Neglecting losses, compute the velocities, V| and V5, at sections 1 and 2.

(b) Explain why the pressure distribution in the fluid at 1 and 2 may be
treated as hydrostatic, and derive an expression for the net horizontal force (per unit
width), F, exerted by the water on the dam in terms of h;, h, Vi, Vs, p and g.

Indicate clearly the control volume used in your derivation and state any
assumptions you make. Compute the force per unit width exerted on the dam using

the results from (a).

(c) In practice, friction is important to the extent that it causes a significant
loss of mechanical energy between 1 and 2, although the frictional forces are
negligible compared with the hydrostatic forces. For given values of A; and h,, will
your calculation in (b) overestimate or underestimate F? Explain your answer.

- - - i
D T T ghe Y

Vi Tl T T TL \ —

D
— h1 - — — -
p— — - —— - - hz
- - - - e /)

SN S ANN /S ANN
Section 1 Section 2

Fig. 2 Flow over a dam spillway
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3 (a) Explain how Bernoulli’s equation is conventionally extended to allow
for mechanical energy losses. Write down the extended Bernoulli equation, defining
all terms which appear in the equation.

(b) Water flows through an abrupt expansion in a pipe. The Reynolds
number is high and the flow may be taken to be uniform upstream and downstream of
the expansion (sections 1 and 2 in Fig. 3 below). The flow is steady on average and it
is observed that the pressure on the back-face of the expansion is uniform and equal
to the upstream pressure p;. Use the force-momentum equation to derive an
expression for p; —p; interms of Vi and V;, where V is the velocity of the fluid at
any one section. State any assumptions you make. [Hint; use the control volume
shown below.]

(¢) Now use the extended Bernoulli equation, in conjunction with the results
of (b), to show that the mechanical energy loss per unit volume, AC , is given by

1 2
AC=C-Cy=5pW -V2)
(Here C is the total mechanical energy per unit volume, i.e. Bernoulli’s constant.)

(d) The flow rate in the pipe is 10 kg/s, the area ratio, Ay/Ay, is equal to 2
and V, is 10 m/s. Calculate the rate of dissipation of mechanical energy (in watts)
caused by the pipe expansion. What happens to this ‘lost’ mechanical energy?

(¢) Note that the fluid viscosity does not appear in any of the above
expressions. The implication is that we can make the viscosity as small as we wish,
yet still obtain a finite rate of dissipation of energy. Why is this, in fact, quite
reasonable?
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Fig. 3 Sudden expansion in a pipe
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4 (a) A fluid with density p , viscosity 4 and mean velocity V passes
through a long, smooth pipe of length L and diameter . Using only dimensional

and geometric arguments, show that the pressure drop, Ap, must be of the form
L1 2)
Ap=| f— kpV
i (f d Xz P

where f is an arbitrary function of Reynolds number, f=f(pVd/L). [You may ignore

entrance effects.]

When the flow is laminar the inertia and hence density of the fluid is unimportant.
Show that, when density is irrelevant, f must be of the form f =k(pVd/ W,

where k is a constant. Hence show that, for laminar flow,

0| =

VL
Ap = %2— [14]
(b) When the pipe wall is rough, with a typical roughness height of £, show

that f is now a function of both Reynolds number and relative roughness, —Z

Sketch the variation of f with Reynolds number and relative roughness. (6]



SECTION B

5 A satellite in the shadow of the moon loses energy by radiation. Its shape is a
cylinder of radius | m and length 10 m. The heat lost at the ends of the satellite
may be neglected. The metallic surface has a low emissivity €=0.1 and is at
temperature 300 K. You may take the temperature of space as 2.4 K.

(a) Calculate the rate of heat loss from the satellite to space. (4]

(b) N equally spaced, concentric metal cylinders are fixed around the
satellite. Their thickness is negligible and emissivity is 0.1 on both sides. Express the
equivalent thermal resistance to radiation heat transfer as a function of N. (The gap
between the cylinders is narrow, so you may assume that the effective radius of all of
the cylinders is 1 m.) [10]

) What should N be if the heat loss calculated in (a) is to be reduced by
a factor of at least 20? [6]
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6 A copper sheet is to be used as a cooling fin. A temperature difference is
maintained along the length, L , of the copper sheet, 7; at one end and room
temperature, To, at the other end. The width of the sheet is considered to be infinite
and its thickness is 1 mm. Both faces of the sheet are characterised by a convection
heat transfer coetficient 4 =10 Wm*K™, and the length of the fin is sutficiently long
that the temperature of the fin reaches room temperature well before the end of the
fin.

(a) Determine the temperature distribution along the length of the sheet,
assuming that it is uniform across the thickness. Sketch this distribution. [The
thermal conductivity of copper, A, is 400 Wm™'K.]

(b) In order to increase the thermal resistance to lateral heat transfer, the
sheet is now coated on both faces with an insulating material of thermal conductivity
Ai=10"Wm'K! and of thickness 1 mm as shown in Fig. 4. Sketch the transverse
temperature distribution across the thickness of the insulated fin and express the local
rate of heat loss in terms of the local copper temperature and 7;. (You may neglect
axial conduction in the insulation.)

(©) Determine the new temperature distribution along the length of the
sheet.
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Fig. 4 Cooling fin

END OF PAPER

(8]

(6]



