Engineering Tripos Part IB SECOND YEAR

Paper 7: Mathematical Methods
Solutions to 2000 Tripos Paper

1. Integral equations, solenoidal flows and field lines

(a) The net heat flow by convection into the volume V is given by

- / / (pcTu).dS

where the minus sign is necessary since dS points along the outward normal. The
net heat flow by conduction into the volume V is given by

- [ / (—AVT).dS

Note that the heat flow is in the direction —VT', so (—AVT).dS is an outward heat
flow, hence the need for the second minus sign. These two heat flows must sum to
give the rate of change of energy contained in the volume V', which is given by

—%[/ (pcT)dV
14
”6%// (pcT)dV = — //(chu).dS - //(—)\VT),dS
By Gauss’ theorem,
/ / (pcTu).dS = / / / pcV.(Tu)dV

s \%

Hence

Gauss’ theorem also tells us that

//(-WT).dS:/// -W.(VT)dV:/// —AVATdV

Hence, the integral equation becomes

%///(pCT) v = -///pcv.(Tu)dV—/// —AVETdV
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(b) Interchanging the order of differentiation and integration gives

/V/ %i:dvz-/J/v.(Tu)dV_/J/,avadv

where o = A/pc. Since this integral equation holds for every volume V, it follows
that at every point

T T
%? = —V.(Tu) +aV*T & aa—t + V.(Tu) = aV?*T

However, we know that (data book)
V.(Tu) =TV.u+ VTu

and also V.u = 0 for an incompressible fluid. Hence

oT
T u.VT = oV?T [7]
(c) The equation
E— =aV*T

1s an example of the diffusion equation. The divergence of q; is given by
V.q = =AV.(VT) = -AV?T

However, if the temperature field is steady, we know that 8T/t = 0 and the diffusion
equation tells us that V2T = 0 as well. It follows that V.q; = 0, and q; is therefore
solenoidal. We can sketch field lines for q;, which are perpendicular to the isotherms
and flow from high to low temperature (since q; = ~AVT).

isotherms

field lines



Examiner’s remarks: This question was well answered by the majority of candi-
dates who attempted it. There was a good level of understanding of Gauss’s Law,
field lines and isotherms. The average mark was brought down by a number of
candidates who had very little comprehension of the concepts involved.

. Properties of vector fields

(a) The divergence of F is given by

0 0

Since V.F = 0 everywhere, it follows that F is solenoidal.

The curl of F is given by

VAF = [%(w) - —-@-(—3y):l k = 4k

The flux of V A F through S, is given by
//(V/\F).de://4dA=47ra2 (6]
S1 S1

(b) Since V AF is solenoidal, it follows that the net flux into the closed hemisphere
defined by S; and S, is zero. Hence the flux of V A F through S, must be 4ma?, the
same as the flux of V A F through 5;.

A similar argument holds for the flux of F. Since F is solenoidal, it follows that the
flux of F through S; must be the same as the flux of F through S;. The flux of
F through S; is clearly zero, since F has no component normal to the plane of 5;.
Hence the flux of F through S, is also zero.

Stokes’ theorem tells us that

//(V/\F).k dA = }{F.dl

where the line integral is taken in the sense shown in Fig. 2. We have already shown
that the left hand side is equal to 4ma?, so it follows that § F.dl = 4ma®. 8]

(c) If f(z) is an arbitrary function of z, it follows that

V. GIF) = (-3 () + 5 (F(2)2) =0

Hence f(2)F is solenoidal, and it follows that the flux of f(z)F through S, must be
the same as the flux of f(2)F through S;. The flux of f(z)F through S; is clearly
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zero, since f(2)F = —3f(z)yi + f(2)zj has no component normal to the plane of S;.
Hence the flux of f(2)F through the hemisphere S, is also zero. [6]

Examiner’s remarks: This was perhaps the most straightforward question on the
examination paper, attracting attempts from the vast majority of candidates. The
level of performance was high, with candidates demonstrating a good grasp of both
Gauss’s and Stokes’s theorems. Once again, the average mark was brought down by
a number of candidates who had very little comprehension of the concepts involved.

. Partial differential equations

(a) Assuming the solution is of the form
u = F(y)coswt + G(y) sinwt

we obtain

du : &u " "
e = —wFsinwt + w@G coswt and —— = F" coswt + G" sin wt
ot 0%y

Substituting into the partial differential equation gives
—wF sinwt + wG coswt = v (F" coswt + G" sin wt)
Equating the coefficients of the sine and cosine terms gives
~wF =vG" and wG =vF"

Hence

F=—(v/w)G" and G = (v/w)F"
Combining the previous two equations, we obtain

F=—(v/w)?F® and G = —(v/w)*GW

Thus the fourth-order ordinary differential equations for F' and G are identical. 8]

(b) Since the differential equation for G is the same as that for F, they must share
the same general solution. Also, since

F(y) >0asy — o0 and G(y) = 0asy — oo

we can immediately rule out the positive exponential solutions, leaving

F(y) = exp(—y/d) (Acos(y/d) + Bsin(y/9))

and
G(y) = exp(—y/d) (C cos(y/d) + Dsin(y/6))
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We now turn to other boundary conditions. The fluid in contact with the plate
(y = 0) must share the same velocity V coswt of the plate, hence

F(0)=V and G(0)=0
Thus
F(y) = exp(—y/8) (V cos(y/6) + Bsin(y/d)) (1)
and
G(y) = exp(—y/d) (Dsin(y/9))

Differentiating twice, we obtain

1] 2D (,UD
G"(y) = =7 exp(—y/6) cos(y/8) = —— = exp(~y/d) cos(y/5)
But we know from earlier that
F = —(v/w)G" = Dexp(—y/é) cos(y/d)

Comparing with equation (1), we see that D = V and B = 0. The velocity field is
therefore

u =V exp(—y/d) [cos(y/d) cos wt + sin(y/J) sin wt]

[12]
Examiner’s remarks: A less popular question with mixed responses. Those who
showed some competence tended to score very highly. However, there were a sig-
nificant number who had almost no idea of how to proceed: formulating boundary
conditions, and in particular realising that the motion of the fluid must decay with
distance from the plate, was the most common problem.
. Newton-Raphson iteration and LU decomposition
(a) (i) At iteration n, we have an approximate solution z, where f(z,) # 0. We
require f(z,4+1) = 0. A Taylor series expansion around z, gives
f(@ni1) = f(@n) + @as1 — 2n) f'(20) + O(Tpi1 — xn)2
Substituting f(z,+1) = 0 and truncating after the first derivative gives
J(n) 5]

0= f(zn) + (Tny1 — xn)f,(xn) = Tngl = Tn f!(zyn)



0 \\2{/& Xo X

The parabola f(z) = 2> —4z+3 = (z — 3)(z — 1) hasroots at z = 3 and z = 1
and a turning point at z = 2. As the sketch shows, the Newton-Raphson algorithm
proceeds by finding the tangent to f(z) at z, and setting z,,; to the intersection of
the tangent with the z axis. It is evident that this will converge to the root at z = 3
only if the starting point is to the right of the turning point, that is only if z¢ > 2.

(iii)

01]0.2 3.4x107* 8.1x 1073
1
2

0.1580 1.144 x 10~* 3.218 x 1073
0.1225 3.982 x 107°

Despite running the Newton-Raphson iteration until the residual is very small (less
than 107%), there remains a significant error in the estimated root zo = 0.1225: the
true root is, of course, x = 0. This is because f(z) is very flat around = = 0. The
equation f(z) = 0 is in fact ill-conditioned.

(b) Write the system of equations as Ax = b. The LU decomposition of A is

10 0 -2 1 00 10 0 -2
0 4 0 | = 0 10 0 4 O
-2 0 4 -1/5 0 1 0 0 18/5

The matrix equation can then be posed as Ly = b, where Ux = y. Solving first for
y gives

1 00 1 12 Y1 12
0 10 Y2 | = | 12 - Y2 | = 12
-1/5 0 1 s 12 Y3 72/5

Finally, solving for x gives



10 0 —2 T1 12 T 2
0 4 0 Ty | = 12 & o | =13

Examiner’s remarks: This straightforward question attracted attempts by almost
all candidates. Many answers to (i) were perfectly satisfactory, though some candi-
dates were unable to manipulate a simple Taylor series expansion. Part (ii) was very
easy for the vast majority of candidates who understood the principles of Newton-
Raphson iteration. Part (iil) was less well answered, with many candidates wasting
time by iterating until [z,| < 107* (instead of |f(z,)| < 10™*) and offering spurious
explanations for the error in the solution. The LU decomposition part of the question
was well answered by many candidates, though some apparently had no idea what
LU decomposition was, while others confused the forms of the L and U matrices. An-
other common mistake was to perform the substitutions in the wrong order, having

found L and U.
. Least squares

(a) (1) We are looking for a minimum of E, which will occur when all three partial
derivatives are zero:

OF =

- = —2 E i1z — (az; i =
5 2 zi [z — (az; + by; + ¢)] =0
oF =

5 = -2 ;:1 yi [z — (az; + by; +¢)] =0
oF -

2 = -2 ;:1 [2i — (az; + by; +¢)] =0

Rearranging and writing in matrix form gives

S Yy YT a S @iz
> Sy n c >z

where all summations are over ¢ € {1...n}.

(ii) The matrix A will be singular if the points are collinear. This will occur every
time if there are only two points, and also for collinear configurations of three or
more points. There will then be an infinite number of planes which fit the points
exactly. There are many other degenerate configurations of points that result in A
being singular: for example, points evenly distributed on the surface of a sphere.

(b) (i) With reference to the diagram, the orthogonal displacement from a point to
the plane is dii, where 11 is the unit normal to the plane:

ai+bj—k
V1+a? + b2
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The vertical (z) displacement from the point to the plane is hk, where

h = z — (az; + by, + ¢)

It follows that

z — (az; + by; + )

V1+a?+ b2

d=hkn=—

and therefore

1 n
E, - 2 e — R 3 . 2
Z d 1+ a2 + b2 ;:1 [zz (az; + by; + C)]

i=1

(ii) The orthogonal approach would be appropriate when errors are equally likely in
the z, y and z directions. In contrast, the vertical approach would be appropriate
when uncertain measurements z; are taken at well-defined locations (z;,y;). The
orthogonal approach leads to a system of equations for the plane’s parameters which
is quadratic in a and b (consider the form of OE'/da and OE'/0b). This contrasts
with the straightforward, linear system for the vertical approach.

Examiner’s remarks: Almost all of the few candidates who attempted this ques-
tions were able to differentiate E to obtain the linear system of equations for the
best fit plane. Very few were able to connect the singularity of the matrix A to the
geometrical configuration of the points. Only one candidate managed to perform the
simple dot product to derive E'. For the last part of the question, candidates who
understood the significance of measurement uncertainty (about half of those who
attempted the question) were able to discuss the two schemes intelligently.



6. Fourier transforms and spectral estimation

(a)

0 . T/2 _e—iwt]T/2
Hw) = / h(t)e ™dt = / e it = | —
—oc0 —T/2 W1 7/
_ 2isin(wT/2)  Tsin(wT/2) wT
B iw - wT/2 = Tsinc 2 [3]

(b)
0 = 5 [ Clw)etdo= [~ (6 wn) + 6 +wo)ed
) = 57| Clwe w—QW_mﬂwwo w + wp)] e™tdw
1, . ,
= 3 (e"0 + e7™°*)  (sifting property of § functions)

1
= 2 t = t
2( cos wpt) = COS Wy 3]

(c) (i) The Fourier transform of z(t) is given by
Xw) = 7[Ad(w—w1)+ Ad(w+w) + Bé(w— ws) + Bé(w + wy)]

By the convolution theorem, the Fourier transform of s(t) = z(¢)h(t) is given by
S(w) = ——X(w ) * H(w / H(w—2)X(2)dQ

1 o0 -
= 5r 3 Tsinc <(—w—2—~—>x

™ [AJ(Q - wl) + A(;(Q + wl) -+ B(S(Q ad (J.)g) -+ B5(Q + wz)] dQ)

By the sifting property of ¢ functions, this simplifies to

Sw) = %[A (ﬁ-‘f—'—;—‘-’lﬁ)wsm (gg-_égg_zz)

e (2T g (20T

For the case wy >> wy, the positive half of the spectrum looks like this (see next page):
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(ii) If wy & w1, the two sinc functions overlap and it is difficult to resolve the individual
components.

(iii) Extending the observation period T' reduces the width of the sinc pulses, making
it easier to resolve the individual components.

(iv) The spectrum of the triangular window function w(t) is given by

W(w) = gsimc2 (%?) (data book)

Compared with the spectrum H(w) of the square window function, W (w) has faster
decaying side lobes (w? as opposed to w) but a wider main peak (87 /T as opposed to
47 /T). The triangular window may help if one small component is swamped by the
side lobes of a nearby, larger one. However, it will not help if the two components
have very similar frequencies: if |wy —w;| < 87 /T, the two main spectral peaks merge.

Examiner’s remarks: This question (the gist of which should have been familiar
from examples papers and one of the Part IB experiments) was answered very well by
many candidates and very poorly by many others. Common gaps in the knowledge
of those candidates who struggled with this question include: the sifting properties
of delta functions; the fact that windowing involves multiplication by the window
function, not convolution; the difference between spectral leakage and aliasing; the
general properties of sinc functions.

. Sampling and reconstruction, continuous random variables

(a) (i) The signal can be recovered using an ideal low-pass filter H(w) with cut-off
frequency wp,.

10
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(ii) From the data book, the Fourier transform of a unit pulse of duration T centered
at the origin is T'sinc (wT'/2). Using the time shift theorem, the Fourier transform of

g(t) is

- T
G(w) = Te “T/?sinc (%-—)

Let W(w) be the frequency response of a filter which can be used to recover z(t)
from z,4(t):

X(w) = Xg(w)W(w)
Recall from (i) that an ideal low-pass filter H(w) can be used to recover z(t) from
z(t):
X(w) = X(w)H(w)
Since z,4(t) is formed from the convolution of z,(t) with g(t), it follows that
Xg(w) = X,(w)G(w)
Putting these equations together we get

Xw) = X (wHWw)=X,(w)Gw)W(w)
ein/Z
= Ww) = H(w)/Gw)= { Tsinc(@T/2) for |w| < Wi

0 otherwise

In other words, the combination of G(w) and W (w) should be the same as H(w).

o) 0 EX) = [ " 2f(a)de

[o o} oo

(i) BAX] = / e f(z) dz = A / 2f(z) dz = AE[X]

-0 — o0

E[X——a]:/w(:v~a)f(x)d:c:/ooxf(a:)dx - a/w f(z) dz = E[X] - a

O -0 -0
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since the area under a probability density function is 1.

(iii)

B -BX)Y = [ (@~ EX)f()da

= / 2’ f(z)dz — ZE[X]/ zf(z)dz + (E[X])2/ f(z)de
= E[X?] - 2E[X]E[X] + (B[X))* = E[X?] - (E[X])’

Examiner’s remarks: In (a), most candidates were able to sketch the ideal re-
construction filter for an impulse train and calculate the frequency response of the
pulse-broadening filter. However, only a handful of candidates were able to deduce
the ideal reconstruction filter for the broadened signal. Many candidates achieved
perfect marks for (b), though others decided to use generating functions and got
hopelessly confused. A few candidates seemed to confuse discrete random variables
with their continuous counterparts, and offered a discrete analysis for (b).

. Probability

(a) A variable is a characteristic that varies over time and/or for different objects
under consideration. A variable is random if the value that it assumes, corresponding
to the outcome of an experiment, is a random event. Discrete random variables can
assume one of a finite number of values. Continuous random variables can assume
any value on a continuous scale. An everyday example of a discrete random variable
is the number of days it rains in a given month. An everyday example of a continuous
random variable is the total amount of rainfall in a given month.

(b) Suppose the weighing machine is reading f. We know the error m — f is Normally
distributed with mean 1 g and standard deviation 10 g. Hence

m—f~N(1,10) < m~ N(1+ f,10)

We require p(m < 1000) = 0.01. The cumulative Normal distribution table (data
book) gives ¢(2.326) = 0.99, so ¢(—2.326) = 0.01. Scaling and shifting for m ~
N(1+ f,10) gives

1000 — (1 + f)
10

So the bags should be filled until the weighing machine reads 1022.26 g.

—2.326 = & f =1022.26

(c) (i) On average, there is one bus every 5 minutes. Assuming x, the number of buses
arriving in any 5 minute interval, is distributed according to the Poisson distribution
with mean 1, then

,1°

p(take the tube) =p(z =0) =e i 0.368 (to 3 significant figures)
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So the probability I take the bus is approximately 1 — 0.368 = 0.632.

(ii) The Poisson distribution is applicable when the counts (in this case, the number
of buses in each 5 minute interval) occur randomly and independently of each other.

This would certainly not be the case for buses running on-time to a timetable: as-
suming regular buses, the probability of one bus in a 5 minute interval is one, and
the probability of any other number of buses in a 5 minute interval is zero, which is
not a Poisson distribution!

The Poisson distribution might be a better model if the buses do not leave the
terminus on time, the route is subject to random traffic delays and my bus stop is
some distance from the terminus. In this case, buses would come at an average rate
of one every 5 minutes, but the particular number of buses arriving in any 5 minute
interval would be random. We still need to assume independence between bus arrival
times. This would require the buses to leave the terminus independently (possible,
especially if they are turning around after random traffic delays on earlier journeys).
Alternatively, the buses could be held up in independent traffic jams on the way to
my bus stop (unlikely).

(iii) Assuming that the probability I take the bus on any one day is equal to 0.632
and independent of the probability I take the bus on any other day, the number of
days I take the bus in a 20 working-day month is Binomially distributed with n = 20
and p = 0.632. The probability I take the bus for precisely 15 return journeys is
therefore

20!
15! x 5!

20045 0.632'°0.368° = 0.632%°0.368° = 0.107 (to 3 significant figures)

(iv) The mean of the Binomial distribution is np = 12.64. So I expect to take the
bus 12.64 days in a 20 working-day month. My expected monthly travel costs are
therefore

12.64 x 2 + (20 — 12.64) x 4 = £54.72 (to the nearest penny)

Examiner’s remarks: Most candidates were able to distinguish between continuous
and discrete random variables, and one or two even attempted to define a random
variable. Most candidates understood how to use the cumulative Normal tables,
though relatively few were careful enough when it came to using the tabulated value:
the most common mistake was to incorporate the 1g bias with the wrong sign. Again,
most candidates were able to successfully manipulate the Poisson and Binomial dis-
tribution formulae, and a good number also offered intelligent comments regarding
the validity of the Poisson assumption.

Andrew Gee
June 2000

13






