ENGINEERING TRIPOS PART IB

Friday 9 June 2000

9 to 11

Paper 7

MATHEMATICAL METHODS

Answer not more than **four** questions.

Answer at least one question from each section.

 $All\ questions\ carry\ the\ same\ number\ of\ marks.$

The approximate number of marks allocated to each part of a question is indicated in the right margin.

Answers to questions in each section should be tied together and handed in separately.

SECTION A

Answer at least one question from this section

- Consider a stationary surface S which encloses a volume V. The volume and the surrounding space are filled with an *incompressible*, moving fluid, the velocity field being \mathbf{u} . Energy is transported across the surface S by two mechanisms. First, there is a heat flux $\mathbf{q}_1 = -\lambda \nabla T$ by virtue of conduction, λ being the thermal conductivity and T the temperature field. Second, energy is transported across the surface by virtue of movement of the fluid. This results in an additional flux of $\mathbf{q}_2 = (\rho cT)\mathbf{u}$, where ρ is the density and c the specific heat capacity of the fluid. The fluid properties ρ , c and λ are constants.
 - (a) By explaining the meanings of the three terms, show that

$$\frac{\partial}{\partial t} \iiint_{V} (\rho c T) \, \mathrm{d} \mathbf{V} = - \iint_{S} (\rho c T \mathbf{u}) . \mathbf{d} \mathbf{S} - \iint_{S} (-\lambda \nabla T) . \mathbf{d} \mathbf{S} \, .$$

Now use Gauss's theorem to rewrite the right hand side in terms of volume integrals. [6]

(b) Show that the integral equation above requires that, at every point in the fluid,

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \alpha \nabla^2 T$$
, where $\alpha = \lambda / \rho c$. [7]

(c) In the limit of a vanishingly small $|\mathbf{u}|$, we obtain

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T.$$

Figure 1 shows a square plate containing a circular hole. The temperature of the inner, circular edge is maintained at T_1 , while the outer edge of the plate is held at a lower temperature T_2 . If the temperature field is steady, show that \mathbf{q}_1 is solenoidal. Sketch the isotherms and the field lines for \mathbf{q}_1 .

[7]

Fig. 1

2 Consider the vector field

$$\mathbf{F}(x,y,z) = -3y\mathbf{i} + x\mathbf{j}.$$

(a) Confirm that \mathbf{F} is solenoidal and that $\nabla \wedge \mathbf{F} = 4\mathbf{k}$. Evaluate the flux of $\nabla \wedge \mathbf{F}$ through the plane, circular surface S_1 , where S_1 is shown in Fig. 2 and defined by $x^2 + y^2 \leq a^2, z = 0$. [6]

Fig. 2

- (b) What is the flux of $\nabla \wedge \mathbf{F}$ through the hemisphere S_2 , where S_2 is shown in Fig. 2 and defined by $x^2 + y^2 + z^2 = a^2$, $z \geq 0$? What is the flux of \mathbf{F} through the same hemisphere? Evaluate the line integral $\oint_c \mathbf{F} \cdot d\mathbf{l}$ along the curve $x^2 + y^2 = a^2$, z = 0, in the direction shown in Fig. 2. Note that no detailed calculation is required for (b), although you must justify your answers.
- (c) Show that $\nabla \cdot (f(z)\mathbf{F}) = 0$, where f(z) is an arbitrary function of z. What is the flux of $f(z)\mathbf{F}$ through the hemisphere S_2 ? [6]

[8]

3 An infinite flat plate is immersed in a viscous fluid and oscillates in its own plane with velocity $V \cos \omega t$, as shown in Fig. 3. The motion of the fluid is governed by the equation

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial y^2} \,,$$

where u is the horizontal component of velocity and ν is the kinematic viscosity.

(a) If the velocity field u(y,t) takes the form

$$u = F(y)\cos\omega t + G(y)\sin\omega t,$$

show, by direct substitution, that

$$F = -(\nu/\omega)G''$$
 and $G = (\nu/\omega)F''$.

Derive identical fourth-order ordinary differential equations for F and G. [8]

(b) The general solution for F is

$$F(y) = \exp(y/\delta) \left[A\cos(y/\delta) + B\sin(y/\delta) \right] + \exp(-y/\delta) \left[C\cos(y/\delta) + D\sin(y/\delta) \right],$$

where $\delta = (2\nu/\omega)^{1/2}$ and A, B, C and D are constants. Use the no-slip condition at the plate (ie. $u(0,t) = V \cos \omega t$) and other boundary conditions to show that

$$G = k \exp(-y/\delta) \sin(y/\delta)$$
,

where k is a constant, and hence find the velocity field u(y,t). [12]

(TURN OVER

SECTION B

Answer at least one question from this section

4 (a) For an equation of the form f(x) = 0, the Newton-Raphson iteration formula is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

- (i) Use a Taylor series expansion to derive the Newton-Raphson iteration formula. [5]
- (ii) Consider the case $f(x) = x^2 4x + 3$. By sketching f(x), find the range of initial vales x_0 for which the iteration converges to the root at x = 3.
- (iii) Now consider the case $f(x) = x^5 + 10^{-4}x$. Starting from an initial value $x_0 = 0.2$, apply the Newton-Raphson iteration formula n times until $|f(x_n)|$ is less than 10^{-4} . Explain why there remains a significant error in the estimated root x_n . [5]
- (b) Using LU decomposition and no other method, solve the system of equations

$$\begin{bmatrix} 10 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

for the unknown quantities x_1 , x_2 and x_3 . [6]

5 (a) A plane of the form z = ax + by + c is to be fitted to the set of points $(x_1, y_1, z_1) \dots (x_n, y_n, z_n)$. The method of least squares is used to find a plane which minimises E, the sum of the squared distances in the z direction from each point to the plane:

$$E = \sum_{i=1}^{n} [z_i - (ax_i + by_i + c)]^2.$$

(i) Show that the parameters of the plane can be found by solving the equation $A\mathbf{r} = \mathbf{b}$ for \mathbf{r} , where

$$\mathbf{A} = \begin{bmatrix} \sum x_i^2 & \sum x_i y_i & \sum x_i \\ \sum x_i y_i & \sum y_i^2 & \sum y_i \\ \sum x_i & \sum y_i & n \end{bmatrix} , \mathbf{b} = \begin{bmatrix} \sum x_i z_i \\ \sum y_i z_i \\ \sum z_i \end{bmatrix} , \mathbf{r} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

and all summations are over the range $1 \leq i \leq n$.

- (ii) Under what circumstances might the matrix A be singular? [3]
- (b) An alternative approach is to find the plane which minimises E', the sum of the squared orthogonal distances from each point to the plane.
 - (i) Show that E' is given by the following expression:

$$E' = \frac{1}{1 + a^2 + b^2} \sum_{i=1}^{n} \left[z_i - (ax_i + by_i + c) \right]^2.$$
 [6]

(ii) Discuss the relative advantages and disadvantages of minimising E' instead of E. [5]

[6]

SECTION C

Answer at least one question from this section

6 (a) Show that the Fourier transform of the rectangular pulse h(t) is $H(\omega)$, where

$$h(t) = \begin{cases} 1 & \text{if } |t| \le T/2 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad H(\omega) = T \operatorname{sinc}\left(\frac{\omega T}{2}\right) .$$
 [3]

(b) Use the formula for the inverse Fourier transform to show that the infinite cosine wave c(t) has Fourier transform $C(\omega)$, where

$$c(t) = \cos \omega_0 t$$
 and $C(\omega) = \pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$. [3]

- (c) A real signal of the form $x(t) = A \cos \omega_1 t + B \cos \omega_2 t$ is observed over the period $-T/2 \le t \le T/2$. Spectral analysis is to be used to estimate A, B, ω_1 and ω_2 .
 - (i) Use the convolution theorem to obtain the Fourier transform of the truncated signal x(t)h(t), where h(t) is defined in (a). Sketch the positive half $(\omega \geq 0)$ of the transform for the case $\omega_2 \gg \omega_1$. [6]
 - (ii) What difficulties can you envisage in estimating A, B, ω_1 and ω_2 if $\omega_1 \approx \omega_2$? [1]
 - (iii) What advantage might be gained by extending the observation period T? [2]
 - (iv) What advantage might be gained by multiplying x(t) by the triangular pulse w(t) before estimating the spectrum? [5]
 - w(t) is defined as follows:

$$w(t) = \begin{cases} 1 - 2|t|/T & \text{if } 0 \le |t| \le T/2, \\ 0 & \text{otherwise.} \end{cases}$$

- 7 (a) A bandlimited signal x(t) has spectrum $X(\omega)$, where $X(\omega) = 0$ for $|\omega| \geq \omega_m$. x(t) is sampled by the impulse train $s(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$. The sampling period T is set to π/ω_m , so that aliasing is just avoided.
 - (i) Sketch the frequency response of an ideal filter which can be used to recover x(t) from the weighted impulse train $x_s(t) = s(t)x(t)$. [2]
 - (ii) $x_s(t)$ is passed through a pulse-broadening filter with impulse response

$$g(t) = \begin{cases} 1 & \text{if } 0 \le t \le T, \\ 0 & \text{otherwise,} \end{cases}$$

producing the stepped signal $x_g(t) = g(t) * x_s(t)$. By first obtaining the Fourier transform of g(t), derive an expression for the frequency response of an ideal filter which can be used to recover x(t) from $x_g(t)$. [8]

- (b) Consider the continuous random variable X with probability density function f(x).
 - (i) Define the expectation E[X] in terms of f(x). [2]
 - (ii) Show that $E[\lambda X] = \lambda E[X]$ and E[X a] = E[X] a, where λ and a are constants. [3]
 - (iii) Show that $E[(X E[X])^2] = E[X^2] (E[X])^2$. [5]

8	(a)	Explain wh	at is mean	t by the	terms di	iscrete	random	variable and	d contin-	
uous	rande	om variable.	Give one	everyday	examp	le of ea	ch type	of random	variable.	[4]

- (b) A weighing machine produces a reading r which does not accurately reflect the true mass m. The error, m-r, is Normally distributed with mean 1 g and standard deviation 10 g. The machine is used by a food company to fill nominal 1 kg bags of rice: when the weighing machine reads f, filling stops and the bag is sealed. If the company wishes only 1% of bags to be underweight, what should f be?
- (c) I have a choice of the bus or tube to travel to work. A daily return ticket costs £2 by bus and £4 by tube. Since one-way tickets are relatively expensive, I always use the same mode of transport to go to work and come home. Every day, I wait precisely 5 minutes at the bus stop: if a bus has not arrived after 5 minutes, I resort to the tube. On average, there are 12 buses every hour.
 - (i) Assuming that the number of buses arriving in any 5 minute interval is well modelled by the Poisson distribution, show that the probability I take the bus on any particular day is approximately 0.632. [2]

[5]

- (ii) Comment on the validity of the Poisson assumption in (i). [4]
- (iii) Find the probability that I use the bus for precisely 15 return journeys in a 20 working-day month. State any assumptions you make. [3]
- (iv) Calculate my expected monthly travel costs. [2]