Engineering Tripos Part IB SECOND YEAR

Paper 7: Mathematical Methods
Solutions to 2001 Tripos Paper

1. Gauss’s theorem and application to electric fields.

(a) Consider an arbitrary volume V' divided into many smaller volumes 6V;.

From the definition of divergence, in the limit of infinitesimal dV;, we have

(V.u) 8V, :f wdA = / VaudV = Z]f u.dA
S 14 i—1 Y Si

Considering the sum of surface integrals on the right hand side, it is clear that
contributions from adjacent “internal” surfaces cancel, as illustrated below.
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Only contributions to > oo, ¢. u.dA from “external” surface elements remain un-
Y i=1J§;

cancelled, so
/ VaudV = f udA [7]
1% s

(b) Consider a small surface element with vector area dA, where dA points away
from the interior of V. From the definition of current density, the amount of current
flowing out of V through this surface element is J.dA. It follows that the total
current flowing out of V' is fs J.dA.: the principle of charge conservation tells us that
this is equal to the rate of loss of charge from V. Since the amount of charge in V is
given by fV pe dV , it follows that

0

— e dV = — ¢ J.dA.
6thV fsd
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Rewriting the right hand side using Gauss’s theorem, we have

b, Ope
— | pedV =-— J . =0,
(,%/Vpdv /Vv dV@/V(at+VJ>dV 0

where we have used the fact that Q-(—gtﬂ = 0, so % fv pedV = fV aa’f dV. Now, this

result holds for any volume V| so the integrand must be zero. Thus

0pe
ot

- -v.J. 8]

(c) Substituting Ohm’s and Gauss’s laws into the result from (b), we obtain

dpe
ot

= —oV.E = ——-zpe.
€

This is a straightforward first order ordinary differential equation in p., which can
be solved by separating the variables:

/ Pedpe tdt
po  Pe o 7 ,
where py is the initial value of p, and 7 is the time constant €/o. Integrating, we find

the solution p. = pgexp(—t/7). So the charge declines exponentially in the interior
of the conductor, which means it must be building up on the surface. [5]

Examiner’s remarks: A fairly popular question, well-handled by many candidates.
The most common error was sloppy integration of the simple differential equation
in (c).

. Solenoidal fields and Stokes’s theorem.

(a) A solenoidal vector field B has zero divergence everywhere. Equivalently, §.B.dA =
0 for all closed surfaces S.
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Consider a vector field D passing through two open surfaces S; and S, that share a
common rim. Stokes’s theorem tells us that

‘/VdeA: vXDdAszdL
S1 C

Sa

where the directions of the normals are fixed in accordance with the right hand screw
rule. Now consider the closed surface S = S; + Sy with outward pointing normal:

%VxD.dAz/VXD‘dA- VxD.dA=0.
5 51

Sa

We have established that §, V x D.dA = 0 for any closed surface S, so V x D must

be solenoidal. 7]
b) (i i j k
(b) () VxF=| £ 2 Z|=2%
o z 0
0 0
Y —(z) = 3
V.E = o y)+ay(a:) 0 [3]

(i) At any point on a field line, the direction vector dr is parallel to F:

—_ d d
dr:[gx}:)\Fz[ y}®i=~g®xdx+ydyzo.
Y z -y z

Integrating both sides, we obtain z? + y? = constant. The field lines are therefore
concentric circles, centered on the origin. (3]

(iii) First using Stokes’s theorem, we have

/vam:fEm:fmm,
S C C

since F and dl are parallel. Noting that |F| = y/2% 4+ y? = a on C, we have

/VXFdA:famzmm?
S C

Now using the result in (a), we know that V x F is solenoidal, so the flux of V x F
through S must equal the flux of V x F through the disc enclosed by C"

/VdeA:/‘VdeA: 2k.dA = 2ma?,
S disc disc

since dA and k are parallel. Now, we also know from (i) that F is solenoidal, so the
flux of F through S must equal the flux of F through the disc enclosed by C, which
is clearly zero since F lies in the plane of C'. Hence

/FdAzO. [7]
S
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Examiner’s remarks: An extremely popular question with many excellent solu-
tions. The most common errors were not using Stokes’s theorem in (a) and careless
presentation of the solution for the field lines in (b).

. Partial differential equations, the wave equation.

(a) To separate the variables, we assume the solution is of the form y(z,t) =
F(z)G(t). It follows that 0%y/dt> = FG and 8°y/dx® = F"G. Substituting into
the wave equation, we obtain F'G = ¢?F"(G, and rearranging this we obtain

é F"
G~ F
Since the left hand side depends only on ¢ and the right hand side depends only on z,

it follows that both sides must equal a constant, k say. We thus obtain two ordinary
differential equations for F' and G:

F'—kF=0 and G —c%kG=0.

The boundary conditions y(0,t) = 0 and y(L,t) = 0 tell us that F(0)G(t) = 0 an d
F(L)G(t) = 0 for all £. Since G(¢) = 0 leads to the uninteresting solution y(z,t) =
it follows that

F(0)=F(L)=0.

Considering the ordinary differential equation in F', we can now deduce that & must
be strictly negative, say k = —p?, since otherwise the boundary conditions for F
imply y(z,t) = 0 as before. Thus F" + p>F = 0, which has the general solution

F(z) = Acospz + Bsinpz .

Referring again to the boundary conditions for F', we obtain F'(0) = A = 0 and then
F(L) = BsinpL = 0. We must take B # 0, since otherwise y(z,t) = 0, so sinpL = 0
and hence p = nn/L for any integer n. We thus obtain infinitely many solutions
F(z) = F,(z), where

F,(z) = Bsin (nmz/L) .

Turning now to the ordinary differential equation for G, and substituting k¥ = —p?,
we have ) en
G +wlG =0 where W =~

The general solution is G, (t) = A, sinwyt + By, coswyt. Combining the solutions for
F and G, we obtain the following solution of the wave equation:

Un(7,t) = (Ap sinwpt + By, cos wyt) sin (nrz/L) |

where w,, = cnr/L.



(b) If y, satisfies the wave equation, then so does an infinite sum of y, over all
integers n. The general solution of the wave equation is therefore:

o0 o

y(z,t) = Z yn(z,t) = Z (A, sin wpt + By, coswyt) sin (nwz/L) .

n—=——oo n=-—0o0

However, the n = 0 term is zero, and the n < 0 terms give essentially the same
solutions as the n > 0 terms, up to a minus sign, so we can write

y(z,t) = Z (A, sinwyt + By, cos wyt) sin (nmz /L) .

n=1

We now turn to the boundary condition dy/0t = 0 at t = 0 for 0 < z < L.
Differentiating the general solution with respect to ¢, we obtain

a o0
—8-%:— = Z (wnAp cOS wpt — wp By, sinwyt) sin (nwz /L) .
n=1

Substituting t = 0 and equating to zero, we have

anAn sin(nwz/L) =0 for 0 <z < L.

n=1

This is an odd Fourier series in z, and by inspection A, = 0 for all n. Thus

y(z,t) = ZB" cos wyt sin (nmz/L) |

n=1

where w, = cnm/L. At time ¢t = 0, we have

y(z,0) = ZB" sin (nmz/L) = f(x).

We could proceed to find the coefficients B, using standard Fourier series techniques.
We would first extend f(z) to obtain an odd function fo(z) of period 2L, where
fo(z) = f(z) in the range 0 < # < L. We would then find the Fourier series for
f.(z), which would require sine terms only, giving us the coefficients B,,. 8]

Examiner’s remarks: The least popular of the vector calculus questions, though
most candidates understood what they were doing. The principal error was in com-
bining the single solution in (a) to the sum of a series in (b): commonly, no justifi-
cation or argument was presented for this.



4. Numerical methods for initial value problems.

(a) (i) The Euler method generates a series of y values spaced at intervals of h as
follows:
y(e +h) = y(z) + hy'(z) = y(z) + hAy(z) = y(2)(1 + Ah).

It follows that y(kh) = y(0)(1 + AR)¥ = A(1 + Ah)*. Finally, writing X = kh, we
obtain y(X) = A(1 + Ah)%/? as required. [4]
(ii) The true value of y(X) is of course Ae**. A Binomial expansion of the Euler
expression for y(X) gives

X (X _ 1 X(X __1N(X -9
y(X) = A[l+%—)\h+—————-h(’él >>\2h2+"(" 3)'<h )A3h3+...
X2 N3 e
= A{1+AX+ TR T . +O(R)| =A[M+0(n)] .

Note that we have used the standard power series expansion of e® (data book) in the
last step. Thus the Euler estimate converges to the true solution in the limit » — 0,
and the error is of order h, as we would expect for an Euler method. 6]

(b) (i) This is the same form of initial value problem as in (a), with A =4 and A = 1.
Substituting f(z,y) = Ay, the second-order Runge-Kutta method becomes

yo+h) = y(@)+hf (:c +2 Lyt -;-h,\y(x)>
= y(z)+h ()\(y(:c) + %hAy(a:))) =y(z)(1 + Ah + %h2)\2) .

By the same reasoning as in (a), it follows that y(X) = A(1 + Ah + 1RZA)X/A,
Substituting X =1, A =4, A =1 and h = 0.2, we obtain the estimate y(1) = 42.82. [4]
(ii) Since this method is second-order, a Binomial expansion of the Runge-Kutta
expression for y(1) would give

y(1) = [e* + CR* + O(h%)] ,

where C is a constant. With h = 0.2 we found in (i) that y(1) = 42.82. Ignoring terms
in h® and above, we can estimate C = (y(1) — e?)/h? = (42.82 — €*)/0.04 = —294 4.

If we reduced the step size to 0.1, we would expect to find y(1) = [e*+ Ch?] =
[e* —294.4 x 0.01] = 51.7, where we have again ignored terms in h* and above.

The actual result of the numerical integration is given by y(X) = A(1+Ah+1h2AZ)X/k
with X =1, A =4, A =1 and h = 0.1, which comes out as 50.4. The difference
between this value and the prediction of 51.7 is because we ignored terms in h* and
above when coming up with the prediction. [6]



Examiner’s remarks: This straightforward question proved too difficult for many
candidates. Typical shortcomings included not being able to work out the exact
solution to dy/dx = Ay, not knowing what the Euler method is and not appreciating
the difference between a first- and second-order method. In contrast, those candidates
who had even a basic grasp of these concepts scored close to full marks.

. Numerical methods for solving systems of linear equations.

(a) The system AX = B can be written LUX = B, where L is a lower-triangular
matrix with 1’s along its leading diagonal, and U is an upper-triangular matrix:

1.133 5.281 _ 1 0 U1 Ui2
24.14 -—1.210 - 121 1 0 U292
Working through the matrix equality row by row, we find:

upy = 1133, up = 5.281, 'U,nlzl = 1.133l5; = 24.14 & {1 = 21.31
loju1s +uze = 21.31 X 5.281 4 ugy = —1.210 < ugp = —-113.7

We now solve the system LY = B using forward substitution:

1.000 0.000 » | | 6414 o | W= 6.414

21.31 1.000 y2 | | 22.93 ¥ | | —113.8
Finally, we solve UX = Y using back substitution (remember to keep only four
significant figures after each calculation):

1.133  5.281 T | 6.414 PR 0 0.9956
0.000 —113.7 | |z, | = | —113.8 z |~ | 1.001 [5]
(b) Repeating with the matrix rows reordered:
24.14 -1.210 - 1 0 U1 U2
1.133 5.281 o l21 1 0 U929

Working through the matrix equality row by row, we find:

U1 = 24.14 , Ugg = -1.210 5 U11l21 = 2414l21 =1.133 & l21 = 0.04693
lgtizg +uge = 0.04693 x —1.210 + uge = 5.281 < uz = 5.338

We now solve the system LY = B using forward substitution:

1.000 0.000 | [y ] _[2293) _ [m 1 [ 2293]
| 0.04693 1.000 | | 2 | | 6.414 ¥ | | 5.338 |
Finally, we solve UX =Y using back substitution:
[24.14 —1.210 | [z, | _ [ 22.93 z, | [ 1.000 |
0000 5338 | |z | | 5.338 z, | = | 1.000 | [5]
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(c) The correct solution to both sets of equations is (by inspection) z; = 1 and z, = 1.
What went wrong in (a) was the creation of the large term Iy, with a truncation
error of the order 0.005. The large magnitude of ly; in turn produced a large term
uge with a truncation error of the order 0.05. For larger systems, u; would have
been used to find subsequent [ and u values, with significant knock-on errors.

For maximum precision, we should reorder the equations so that the largest magni-
tude terms appear along the leading diagonal of the coefficient matrix. The aim is
to ensure that the multipliers in L remain small, and that the terms in U are of the
same order as those in the original coefficient matrix. This strategy is equivalent to
partial pivoting in Gaussian elimination. Even better is to reorder the equations so
that the elements along the leading diagonal have large magnitudes relative to the
other elements in their row. This is known as scaled partial pivoting or equilibrating.

(d) LU decomposition can produce accurate solutions if care is taken to reorder the
equations appropriately. In terms of speed, the triangular factorization is order N 3 for
an N x N system, while the forward and back substitutions are relatively insignificant
(order N?%). If the system of equations is to be solved repeatedly, with the same
coefficients but different right hand sides, then the LU decomposition does not need
to be recomputed and each extra solution requires only the O(N?) substitution stage.

Iterative techniques, like the Gauss-Seidel method, do not always converge (a neces-
sary condition is that the coefficient matrix is strictly diagonally dominant), but can
be efficient for certain large (N ~ 10°) systems. If the coefficient matrix is sparse, and
there is a pattern to the nonzero entries (eg. tridiagonal systems), then an iterative
process could find a solution much more rapidly than LU decomposition.

Examiner’s remarks: Most of the candidates who attempted this question knew
what LU decomposition was, though few were able to use it to solve a couple of 2 x 2
systems to the required precision: there were far too many algebraic slips. Intelligent
comments on the accuracy of LU decomposition, and the effects of permuting the
equations, were few and far between: the most common suggestion for improving
accuracy was to use more significant figures, which completely misses the point.
Discussion of the relative merits of LU decomposition and iterative techniques was
also of a very poor standard: many candidates failed to even distinguish the two,
while many wrote about how long it takes to do the calculations by hand, revealing a
complete failure to appreciate that the course was about computer numerical analysis.

. Fourier transforms, Fourier series and Parseval’s theorem.
(a) The Fourier transform of z(t—T) is calculated using a change of variable u = ¢—T
o o0 (e}
/ z(t — T)e ™tdt = / z(u)e ¥ D dy = e'i“’T/ z(u)e du = e T X (w),
-0 - 00 -0
where X (w) is the Fourier transform of z(t).

(b) z(t) is evidently the sum of three triangular pulses:
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The Fourier transform of the central triangular pulse is (7/2)sinc®(wT/4) (data
book). The Fourier transforms of the outer two can be found using the time-shift
theorem proved in (a): they are simply ¢7/2 and e~*7/2 times the transform of the
central pulse. Summing the individual transforms, we obtain

. . T T
X(w) = (1 +e®T/2 4 e7T/2) 5 sinc? (942) =3 (1 + 2 cos %T—) sinc? (%) . [9]

(c) By Parseval’s theorem,

.21;/: X () dw = [0 ()% dt

o0}

The integral over ¢ is much easier to evaluate than the integral over w.

x(®)]? y(t)

/_—_1‘—\ |

T | I [ i

T
T T2 0 T/2 T t o T2 1

The area under |z(t)|? is the area under the rectangular section (which is obviously
equal to T') plus twice the area under the parabola y(t):

7/2 T2 o\t 4 [T 4 T T
t = — = — | — — e P,
[ [(7) #=m 5, =

Summing the three contributions, we obtain

1 [ ) T T 4T
X()fdo=T+ >+ > = —.
| X (w)|* dw teste=3 [5]

21 ) o
(d) By the definition of the Fourier series (data book), the coefficients for a series of
period 27" are given by

1 T T oo

—inw 1 —inw 1 —inw
= 57 _T:cp(t)e Otdt:ﬁ wTa:(t)e otdt = — x(t)e otdt

Cn oT |,
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where wy = 7/T and we have used the fact that z(t) = 0 for |t| > T. Now compare
this expression with the expression for the Fourier transform:

X(w) = f_ Z z(t)e~tdt .

It is immediately evident that
1
n = ==X .
Cn = o (nwy)

Examiner’s remarks: A popular question which produced a wide variety of so-
lutions. Candidates with basic mathematical skills and some idea about Fourier
transforms scored close to full marks. Too many other candidates performed poorly.
In (a) some thought that z(t — T') = z(t) — z(T'); in (b) some thought that functions
added like jigsaws, so you could construct a trapezium by placing two triangles side
by side and adding an inverted triangle to fit the space between the first two; in (c)
many could not find the area under a parabola, a common mistake being to assume
that [ |z(t)]*dt = (f z(t) dt)*; and (d) totally confused most candidates.

. Discrete Fourier transforms, moment generating functions.

(a) (i) The DFT of a 4-point sequence x,, is given by

3
Xk — § :mne—zkn‘rf/2 i

n=0

Evaluating each term in turn, we obtain

3 3
Xo = E :cneO:E T, =0,
n=0 n=0

3
X, = Zmne—z’nn/z =& — ewi21r/2 =1 (_1) =2,
n=0
3 .,
X, = ane’m" =l —e " =1-1=0,
n=0

3
X; = ane—ilinw/il S e——i61r/2 =1 (_1) -9
n=0

The terms Xj ... X3 correspond to the frequencies 0 Hz, 1 Hz, 2 Hz and 3 Hz respec-
tively.

(ii) The multiple non-zero terms in the DFT of z, are a result of sampling. The
complex Fourier series representation of 2(t) = cos(2mt) is > po_. cke™**™, where
c; = c—1 = 0.5 and all other coefficients are zero. The DFT is a periodic version ¢
of the coefficient sequence, formed by repeating the coefficients at intervals of four
(the sampling frequency), as shown below.
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There is also a scale factor of four (the number of samples). [4]

(b) (i) The moment generating function of the Normal distribution is readily found
by completing the square in the integral:

o0

g($> = / “Swf( \/_2_:,_1:/ -—s:c —mz/de — __,._..._/ —(:l: +25w)/2dx

]. 2 2
= —((z+5)°~5%)/2 7, —(w+8) /2 4 — /
e dz = e dr = ¢’
\V2om f_oo /

since the final integral is a Normal distribution with mean —s and unit variance, and
the area under any probability density function is one. [5]

(i) If we differentiate the moment generating function three times, we find

[o0)

g"(s) =— /oo z*e™*® f(z)dz , and hence E[X?] = / 3 f(z)dz = —¢"(0).

—00 —0

Differentiating the expression for ¢(s) found in (i), we obtain
gl(s) — 8632/2 : g//(s) - 632/2 + 82632/2 : gm(s) — Sesz/z + 25632/2 + 83632/2 )

So E[X3] = —¢"(0) = 0. This is readily verified by direct evaluation of the integral
[ 2 f (x)dm Smce z* is an odd function and f(z) is an even function, the product
z3f(z) is odd and the integral, which is arranged symmetrically around the y axis,
is therefore zero. [5]

Examiner’s remarks: An unpopular question which produced some very good
answers from the few candidates who understood the material. Unfortunately, the
majority could not evaluate the most straightforward of DFTs in (a) and had little
idea about what the DFT was measuring. Only one candidate thought to complete
the square in (b), and surprisingly many had difficulty differentiating exp(s®/2) three
times to find E[X?].

. Probability and hypothesis testing.

(a) Statistical significance is a concept encountered in statistical tests of hypothesis.
We assume that the statistical event in question is a random variable governed by
a particular distribution: this is the null hypothesis. Using this hypothesis, we then
calculate the probability of the observed event occurring. If this probability is less
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than e, we say that the event is significant at the € level and reject the null hypothesis
in favour of an alternative. Typical confidence limits are € = 0.05 and € = 0.01.

(b) (i) If we assume that the distribution of marks is symmetrically arranged around
the mean (ie. the median is equal to the mean), then the probability of any one mark
exceeding the mean is 0.5. This is not a bad assumption for typical distributions
of marks. We must also assume that the first 10 scripts are independent, random
samples and not specially selected in any way. Then the probability that m out of n
marks exceed the mean follows a Binomial distribution:

p(8 or more > mean) = p(8 > mean) + p(9 > mean) + p(10 > mean)
= 19C5(0.5)1 419 Cy(0.5)™ +1° C;,0(0.5)'® = 0.0547

(i) We can now test the significance of this event. The null hypothesis is that the
mean mark is unchanged at 61.5%, the alternative hypothesis is that the mean has
gone up. Under the null hypothesis, there is a 5.4% chance that 8 or more scripts out
of 10 attract marks above 61.5%. Therefore, the event is not significant at the 5%
level, and we have no grounds to reject the null hypothesis at this level of confidence.

(c) (i) Let X be the mark awarded to any one script: we know that X is a random
variable with mean u and standard deviation o. Now consider the random variable
Z = (X1 + X2 +...+ X35)/35, the average mark across 35 randomly selected scripts.
7 is the scaled sum of a large number of identically distributed random variables (35
is large enough) and the central limit theorem therefore applies: Z ~ N (i, 0/+/35).

(ii) The null hypothesis is that the mean of this year’s marks is 61.5%: the alterna-
tive hypothesis is that the mean of this year’s marks is greater than 61.5%. To get
anywhere with the significance test, we need to assume that the sample standard de-
viation (12%) is a good estimate of the underlying population’s standard deviation o.
So, under the null hypothesis, we assume Z ~ N (61.5, 12.0/\/?>_5) = N (61.5,2.028).

We now normalize the observed average mark of 65.4%, to see where it lies on the
standard Normal curve:
65.4 — 61.5
2.028

Since 0.973 > 0.95, the observation is significant at the 5% level and we can therefore
reject the null hypothesis with 95% confidence. As well as the assumption about the
population’s standard deviation, we have also assumed that the 35 marked scripts
are randomly drawn from the population and not specially selected in any way.

=1.923 and ¢(1.923) =0.973

(d) The test in (c) allows us to conclude that the mean has gone up with a known, 5%
chance of being wrong. We cannot draw such powerful conclusions from the test in
(b). Even though the test failed to reject the null hypothesis, we cannot subsequently
accept the null hypothesis since we do not know the probability that such a decision
is wrong (this probability depends on the true, unknown mean). The correct thing
to do after the (b) test is to withhold judgement and collect more data.
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Another argument against the test in (b) is that we had to assume that the median
of the distribution of marks was the same as the mean. No such assumption was
required for the test in (c). In addition, the outcome of the test in (c) was some way
away from the confidence limit, whereas (b) was borderline.

Examiner’s remarks: A fairly popular question, well-handled by many candidates.
Most understood the meaning of statistical significance and correctly associated it
with hypothesis testing. Furthermore, most correctly applied the Binomial distri-
bution in (b) and showed proficiency in the use of Normal tables in (c) (though
often with the wrong variance, which is surprising given that the question indicated
what variance to use). The most common mistake was drawing the wrong conclusion
from a significance test: having calculated that the probability of an event was fairly
large under the null hypothesis, candidates would reject the null hypothesis! Few
candidates mentioned the central limit theorem in (c).

Andrew Gee
June 2001
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