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Q1. Statically-indeterminate truss (ELASTIC)

Attempts: 122 out of 237. Average mark: 12.5/20.

A generally pleasing response to this question (which was almost identical to a recent
Part IIA question). Most students demonstrated that they had mastered the vector
notation for virtual work that has been introduced by the lecturer, Dr Guest (e.g. t =
totxs , e = Ft , 0 = s.e , etc). Most got full marks for part a), the three bar truss.
However, to compute the displacements, many students used a second application of
virtual work, dotting the full system with itself. This led to a page of calculations and
some wasteful expenditure of time, when answers can just be read from the earlier
results: the joint displacement components are equal to the extensions of the
horizontal and vertical bars (This obvious result can also be obtained from virtual
work (if so desired) by dotting the full, real (compatibility) system with virtual
(equilibrium) systems having unit tensions in only the horizontal or vertical bars
respectively, instantly giving 1.8y = 1.e; and 1.8y = l.e). (See below)

The second part of the question caused some problems. For the number of
redundancies, many just spotted that removing 6 bars left a statically-determinate
truss. Most, however, used Maxwell’s rule, and of these, few obtained the correct
answer. Many spotted that the eight-bar truss could be obtained by superposing four
of the trusses analysed in part a) and then made reasonable attempts. However none
noticed that self-equilibrating vertical forces would then be necessary to ensure
vertical compatibility between the trusses, and thus no model answers were obtained.
(n.b. the final part of the question should have stated that all bars had the same area,
behaved elastically and were initially stress-free. However, all students made
appropriate assumptions, and one student gained marks for referring to “the infinite
number of possible solutions”.)
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Q2. Thin-walled structure and Mohr’s circles of stress and strain (ELASTIC)
Attempts: 220 out of 237, Average mark: 14/20.

A very popular question that was answered remarkably well. Almost all obtained the
correct stresses and strains in the wall of the pressurized cylindrical shell, and could
draw the appropriate Mohr’s circles. There has been debate about whether introducing
both stress and strain constructions into Part IB presents too much difficulty but the
popularity and success at this question suggest that it does not. On thin-walled theory,
a small proportion of students thought that the through-thickness strain was zZero, even
when they had successfully applied 3D Hooke’s Law to calculate the in-plane strains.
Parts b) and c) were rather challenging, requiring mastery of the two Mohr’s circle
constructions, yet a number of model answers were submitted. Regarding mistakes, a
few thought that equal-and-opposite torques of magnitude T meant that shear stresses
on the central section had to integrate to 27. The most common €Irror was not to
consider all three Mohr’s circles when applying the shear stress, and thereby apply
Tresca’s criterion to an inner circle. For the strain gauges, only a few recognized that
the principal axes of stress and strain coincide, such that angles to the directions of
principal strain can be obtained from the Mohr’s circle of stress. To find the strains
along the 45 degree directions, many therefore erroneously rotated by 90 degrees
from the principal strains, rather than from the hoop/longitudinal strains.
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Q3. Statically-indeterminate frame (ELASTIC)

Attempts: 85 out of 237. Average mark: 10.6/20.

A modest number of attempts, loosely divisible into ‘almost completely correct’, and
‘almost completely incorrect’ responses. Full, correct answers often occupied only
two sides of paper. Many students recognized ‘by inspection’ that the degree of
indeterminacy was two (“weld up hinge then make a cut” or “add two hinges to get
three-pinned arch”). However a large proportion applied Maxwell’s rule for trusses to
this frame, and all manner of unlikely predictions for the degree of indeterminacy
were put forward.

All bar one attacked the problem using deflection coefficients, finding en route that,
for this load case, symmetry reduced the problem to one of a single unknown. The
most common mistake was to use the wrong deflection coefficients (e.g. for a
cantilever with applied end-moment rather point load). One student tried to express
the problem in the manner of Question 1 (t = to+xs, etc.) but did not get far.
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Question 4  Plastic collapse of a statically indeterminate beam (PLASTIC)
(220 attempts, average 111.6/20)

This question was very popular being attempted by 93% of candidates. Eight students
obtained full marks whilst two obtained zero marks. The vast majority could identify the
appropriate upper bound mechanisms in part (a) and calculate the required plastic
modulus Zp for span AB under the point load however a frustratingly large number
went on to assume energy was dissipated at the simply supported hinge at C in span BC
and wrote ED = 4Mp0 rather than the correct value of 3Mp# for this case. Units were
again often incorrectly specified or ignored altogether with some extraordinary
combinations being given for bending moment in some cases. The other most common
error was to choose the lower value of Mp = 80 kNm from span BC as the critical value
rather than the higher value of Mp = 90 kNm from span AB when selecting the
appropriate member size for the entire structure from A to C. A few used values of Zyy
rather than Zxx when selecting the appropriate Universal Beam from the databook.

The lower bound part (b) proved more problematic and was marked very generously as
a result. This was a quite difficult question although the overall methodology was well
presented by a high proportion of candidates. A number of candidates failed to
appreciate that this was a plastic analysis question and headed off in pursuit of a purely
elastic solution using deflection coefficients from the data book. The answers to part(c)
were divided quite evenly between those that seemed to have listened in lectures and
those that had missed the point that residual stresses do not effect the collapse load of
such a structure. Part (d) was well answered by most students who recognised that
ductility is a fundamental requirement when applying plastic analysis. Understandably
the lower bound theory is found to be somewhat difficult by many students and may
need further attention in the lecture course next year.
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Question 5  Slip plane analysis of continua (PLASTIC)
(105 attempts, average 13.5/20)

This question was unpopular but well answered by those that attempted it. Four students
obtained full marks for this question. It is likely that many students chose not to even
revise this topic as it had not turned up in an exam for many years. It was a relatively
straightforward slip-plane question quite similar to those asked in the examples problem
sheet.

The most common mistake for Mechanism 1 was to assume the wedge underneath the
block underwent a purely vertical displacement rather than sliding down the inclined
surface at an angle of 60 degrees to the horizontal. As a result the displacement
diagrams generated were also incorrect. Most found Mechanism 2 much easier to
analyse with many getting full marks for this section. Parts (c¢) and (d) were well
answered by most candidates.
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Question 6  Thin walled structure (ELASTIC)
(191 attempts, average 11.0/20)

Four students obtained full marks for this question. This was a standard problem on the
response of a thin walled structure to bending, torsion and axial loading. It was very
similar in principle to questions on this topic in several exams in recent years although a
slight complication was introduced by adopting a circular cross-section and dividing the
pole into two different sized sections. In part (a) many students failed to read the
question properly. To obtain full marks both a sketch of the force resultants and the
values at the specified points were required. Too often either just a sketch or just
calculated values were given. Many still found difficulty in drawing the bending
moment diagram, often incorrectly showing a step in moment at the change in section at
BC. The calculation of rotation in part (¢) also proved difficult with many confused over
the term for the enclosed area, A. and also confusing J with I. In part (d)(i) relatively
few students recognised that the shear stress on the line of symmetry at A due to the
applied load F was zero although most were able to obtain the uniform shear stress
resulting from the torsion 7. Another common error was to forget to include provision
for the axial load on the longitudinal stress on the section.
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