Engineering Tripos Part IB SECOND YEAR

Paper 7: Mathematical Methods
Solutions to 2002 Tripos Paper

1. Ewvaluation of integrals, Jacobians.

(a) Consider a horizontal (z—y) slice through the tetrahedron:

1-y-z

0 X

If we evaluate the x integral first, then the y integral, then the z integral, the limits
are
0<2<1, 0€y<l—2z, 0zl —y—2.

The integral can therefore be written as

L O o) o]

Starting with the x integral, we have

1-y—=z
/ yzdr = [yzx}é_y_z =yz— 2yt —y? =yz(l —2) — 29 .
0
Continuing with the y integral, we have
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1—2
/ (yz(1—2)—2*) dy = |z2(1—2)y" — =2y
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Finally, the integral in z is
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(b) The i component of J is parallel to S, while the k component is perpendicular
to S, so the flux integral becomes
/ xydxdy .
s

To simplify the region of integration, we change to a polar coordinate system centred

at (1,1), so
x=1+rcosf, y=1+rsind .

The limits of the area S are then 0 < r <1 and —7 < # < —7/2. The Jacobian of
the transformation is given by

Ox/0r Ox/00

J _’ dy/or Oy)06

’:r00529+7“sin29:7" )

The flux integral is therefore

—7/2
/xydxdy = / / (14+7rcos@)(1+rsin®)rdrdd
s
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_ (_% n %<_1 —0) — %(—1)) — (—g + %(0 +1) - %6(1)>
— Z_ ;_i . [10]

Examiner’s remarks: A popular question on volume and flux integrals that was
particularly well answered by many. The principal error was that of minor slips in
mathematical manipulation. An error of more concern was in carelessness in defining
coordinates and angles. A small, but worrying, number of candidates believed that
they were calculating the volume of a tetrahedron in (a).

. Irrotational vector fields and scalar potentials.

(a) An irrotational vector field u has zero curl everywhere. The line integral ¢ u.dl

is zero around any closed path ¢, while the open line integral fab u.dl depends only

on the end points a and b and not on the path taken between these points. For every

irrotational vector field u there exists a scalar potential ¢ such that u = V¢. The
. b .

open line integral ['u is equal to ¢(b) — ¢(a).



From the above, it follows that V x V¢ = 0 for any differentiable scalar field ¢. This
can be proved by expanding in Cartesian coordinates:

i j k 02¢/0y0dz — 02¢ /D20y
VxV¢=| 0/0x 08/0y 8/0z |=| —(0?°¢/020z — 0*¢/020z) | =0,
0¢/0x Op/dy 0¢/dz 0?¢/0x0y — 0*¢/dyox

since the cross-derivatives are equal for any differentiable scalar field ¢.

(b) (i) Converting from Cartesian to to cylindrical polar coordinates, we have xi+yj =
re,, and x? + y* = r%. Hence
re. €,

F= 5 = — =r"e, wheren=—1.
r r

(ii) To show that F is irrotational, we compute its curl in cylindrical polar coordinates:
1| e reg e,
VxF=-|09/or 0/00 0/0z |=0 .
"let0 0

So F' is indeed irrotational. Its scalar potential ¢ can be found as follows:

9¢ e 0b  0b _

V = - z 7F: 717‘

¢ ear+r86+e(92 "e
0

— a_¢ rle¢=Inr+c, for any constant c.
r

Since ¢ depends on r only, the equipotential surfaces will be surfaces of constant r,
which are simply concentric cylinders around the z-axis.

z

(iii) Since F is irrotational, we can compute the line integral by evaluating the scalar
potential at the end points. The starting point at ¢ = 0 has Cartesian coordinates
(1,0,0) and cylindrical radius » = 1. The finishing point at ¢ = 1 has Cartesian
coordinates (2,1,sin1) and cylindrical radius » = /5. The difference between the
start and end potentials is therefore In V5 —1In1l=1n+5 = 0.805.



(c) A solenoidal vector field has zero divergence everywhere. Taking the divergence
of r"e,, we get

1 9(ram Lin+1)rm ifn# -1
V.(re,) = L AT () 7
r or % x 0 ifn=-1
So, apart from a singularity at r = 0 (the z-axis), the field r"e, with n = —1 is

solenoidal: all other values of n give fields that are not solenoidal.

Consider the cube bounded by the planes |z| = 1, |y| = 1 and |z| = 1, and also
the cylinder with length 2 and radius 1, centred on the origin and aligned along the
z-axis: a top view of these two surfaces is shown below.

y
1

Since the divergence of F is zero everywhere inside the shaded volume, Gauss’s law
tells us that the flux of F into the shaded volume is the same as the flux out of the
shaded volume. This implies that the flux out of the cube is the same as the flux out
of the cylinder. It is straightforward to evaluate |, ¢ F.dA over the cylinder, since F
is perpendicular to the cylinder at all points on its surface, so the integral is simply
the surface area of the cylinder multiplied by |F|. Furthermore, |F| =r~! = 1 at the
surface of the cylinder. Hence

/F.dA:1><27r><1><2:47r.
s

Examiner’s remarks: A popular and well answered question on vector calculus.
The most common error was found in (c¢), where most did not appreciate the impor-
tance of the singularity at the origin and said that the flux integral was zero. The
line integral in (b)(iii) was most easily calculated making use of the scalar potential
in (b)(ii), but most candidates attempted the integration directly.

. Partial differential equations, the diffusion equation.

(a) Heat flow is proportional to VT, which is simply 07/0x in the one-dimensional
case. Since the bar is insulated at its ends, there is no heat flow at these points and
so 0T /0x =0at x =0 and z = L.



(b) Assume the solution is of the form T'(z,t) = F(z)G(t). Then 9T/0t = FG and
O*T/0x?* = F'G. Substituting into the diffusion equation, we obtain FG = aF"G,
and rearranging this we obtain

G )k

oG F
Since the left hand side depends only on ¢ and the right hand side depends only on z,
it follows that both sides must equal a constant, k£ say. We thus obtain two ordinary
differential equations for F' and G:

F'" “kF=0 and G —akG =0 .

The boundary conditions 97/0x = 0 at x = 0 and = L shed some light on the
sign of k. Since 0T'/0x = F'(x)G(t), it follows that F'(z) = 0 at x = 0 and = = L:
the alternative, that G(t) = 0, leads to the uninteresting solution 7'(z,t) = 0. If k
is positive, the ordinary differential equation for F' has a weighted exponential solu-
tion, which will satisfy the boundary conditions for F’(z) only for the uninteresting
weighting of zero. We therefore deduce that k is negative, k = —p? say, and so

F(x) = Acospx + Bsinpr = F'(x) = —Apsinpx + Bpcospx .

If F'(x) = 0at x = 0, B must be zero. Furthermore, considering the remaining sin px
term, if F'(x) = 0 at x = L, p = n7/L for any integer n. The ordinary differential
equation for G' can now be written G + A2G = 0, where \, = py/a = nmy/a/L. The
solution is G(t) = Be ™t for any constant B. Bringing everything together, we have
nwx nmwy/a
T (z,t) = F(x)G(t) = A, cos % e ! | where \, = W[\J/_ :
If T,, satisfies the diffusion equation, then so does an infinite sum of 7T, over all
integers n. The general solution is therefore

> nmwT
L _x2¢

T(x,t) = Z T, (z,t) = iA” cos ——e :
n=0

n=-—o00
where we have ignored the n < 0 terms, since they are the same as the n > 0 terms.

(c) For t =0, we have
nwx

T(x,0) = ZA" cos —— .
n=0

This is an even Fourier series: we need to find the coefficients A,, which result in
the given square wave in the range 0 to L. If we differentiate the Fourier series for
a triangular wave in the electrical data book, we obtain an even Fourier series for a
square wave of peak-to-peak amplitude 8/T" and period T

@ — ﬁ (_1)n+1 W
dt w2

n=1

cos(2n — 1)wot b 27
ere wy = — .
@n—1) " T




If we equate t with  and 7" with 2L, scale the amplitude by 1007'/8 and add an
offset of 150 (the average of the given square wave), then this is exactly what we
want for 7'(z,0). So

200 o= (—1)"*1 (2n — 1) 200  7x
T(z,0) = 150 + — =150 + —— cos — — ...
(z,0) T Z (2n —1) o8 L TS

Thus Ag = 150, A; = 200/7 and Ay = 0. As ¢ — oo, all the terms in the expression
for T'(x,t) decay to zero apart from the Ay term, which is what we’d expect: the
temperature eventually levels out everywhere to the average initial temperature. The
higher harmonics decay faster than the lower harmonics, so at some intermediate
value of t we can approximate T'(z,t) by the Ay and A; terms alone.

T(x.1) T(x1)
2001 200 1
100 | § 100 |
0 L X 0 L X
very large t intermediate t

Examiner’s remarks: This was the least popular question in Section A and the
worst handled (though there were several excellent answers). Part (a) was surpris-
ingly poorly answered, suggesting that many candidates had no physical view of the
problem they were solving. Much the same might be said of the answers to (c). In
solving the PDE, many candidates chose solutions arbitrarily to ensure they matched
the given answer, with no attempt to provide an explicit argument for their choice:
this is disturbing.

. LU decomposition, the fundamental subspaces of a matriz, least squares.

(a) We can compute the LU decomposition by performing Gaussian elimination on
A keeping track of L and U as we go:

[ - [ 3]

10 3 -1 4
= 210 0 )=

There are two pivots, so the rank of A is two.



(b) The dimensions of the row and column spaces are both equal to the rank of the
matrix, in this case two. The dimensions of the row space and the left nullspace add
up to two, the number of rows: hence the dimension of the left nullspace is zero. The
dimensions of the column space and the nullspace add up to three, the number of
columns: hence the dimension of the nullspace is one.

(¢) The column space is given by the columns of A that have pivots. These are
[3 6]7 and [ -1 2]7.

The row space is given by the rows of U that have pivots. These are [3 —1 4]7
and [0 4 —7]7.

The nullspace is given by the solution of Ux = 0, which is found by setting the free
variable to 1 and solving by back-substitution:

30 4| - [8]

So the nullspace is [ =3 7 4]T.

The left nullspace has zero dimension, as noted in (b). So, the left nullspace contains
only the zero vector [0 0]7.

(d) ATx lies somewhere in the column space of AT (the row space of A). The error
vector lies in the left nullspace of AT (the nullspace of A):

-3 -3 -3
error vector = 7] —ATx=\ 7| e ATx=yp 7
4 4 4

So we have established that ATX lies in the row space of A and the nullspace of
A. Since these two subspaces are orthogonal, the only solution for ATx is the zero
vector [000]7.

We can now deduce X. Since A’x = 0, x lies in the nullspace of AT which is the
same as the left nullspace of A. We have already established in (b) that the left
nullspace of A is the zero vector, so x = [0 0]7.

Examiner’s remarks: This question asked the candidates to explore the properties
of a 2 x 3 matrix. Almost all found the LU decomposition correctly, but it was
downhill from there. About half the candidates thought the rank of the matrix was 1
(clearly indicating that they did not understand what the rank of a matrix is), while
fewer than half managed to compute bases for the four fundamental subspaces. In
part (d), only a couple of candidates solved the least squares problem by considering
the orthogonality of the subspaces, some others got the right answer by tedious
algebraic expansion, while most did not have a clue.



5. FEigenvalues, eigenvectors, linear difference equations.
(a) By definition, we know that Au, = A\guy, for £ € {1...n}. Concatenating all n
of these equations, we obtain

A [111 uy ... un] = [)\1111 AUy ... )\nun] & AU =UA

Finally, post-multiplying both sides by U™!, we get A = UAU™L.

(b) (i) The difference equations may be written in the form x;.; = Axy, where
xr = [yp 2 |" and

0.7 0.1
A= { 0.3 0.9 }
(ii) From the recurrence relation x;y; = Axy, it follows that x; = Axg, xy =

AAxq, and so on, giving the general solution x, = A¥x,. Substituting the diagonal
factorisation from (a), we obtain

x;, = UNUT'UAU'UAU .. . UAU 'xy = UANU 'xg
(iii) The characteristic equation for A is

‘(0-7—A) 0.1 ‘ = 04 (0.7-2)(0.9-X) —0.03=0

0.3 (0.9 —\)
S A —16MA+06 = 0 X=1lorA=06

Now solve for the eigenvectors, starting with A = 1. Set us = 1 and solve for u; by
back-substitution:

07 017[1/3 1/3

0.3 0.9 1 1

So the unit eigenvector corresponding to A = 1 is [ 0.3162 0.9487 ]7. Repeating for

A= 0.6, we get
0.7 0.1 —1 -1
{0.3 0.9“ 1} = O'GX{ 1}
So the unit eigenvector corresponding to A = 0.6 is [ —0.7071 0.7071 ]7.

The solution to the difference equations is therefore

X =

03162 —0.7071 171 071°703162 —07071 1 T 0
0.9487  0.7071 | | 0 0.6 0.9487  0.7071 3

B 0.3162 —0.7071 1 071"[ 0.7906 0.7906 0
N 0.9487  0.7071 0 0.6 —1.061 0.3536 3

[4]



In the limit £ — oo, we have

X —

0.3162 —0.7071 10 0.7906 0.7906 0 | 075
0.9487  0.7071 00 —1.061 0.3536 3] ] 225

(c) The eigenvalues of A™! are 1.0 and 1.667 (the reciprocals of the eigenvalues of
A). The eigenvectors of A~1 are the same as the eigenvectors of A. The solution of
the difference equation is therefore

1 0

Xe =U { 0 1.667

k
:| U71X0
So, unless xo = 0, |xx| — 00 as k — oo (since one of the eigenvalues is greater than
1). If xo =0, x5, = 0 for all k.

Examiner’s remarks: This straightforward question asked the candidates to apply
simple eigenvector techniques to analyse a system of two linear difference equations
(describing a Markov process, incidentally). While some candidates scored close to
full marks, a disappointing number struggled with even the simplest of calculations,
like finding the eigenvalues and eigenvectors of a 2 x 2 matrix. Fewer than half the
candidates were able to prove the fundamental relationship A = UAU™!. Only a
handful successfully negotiated a few lines of algebraic expansion to find the limiting
values of the difference equations.

. Sampling and reconstruction.

(a) The signal must be sampled at angular frequency w > 2w,,, so the limiting value
of T'is 7 /wy,. The spectrum of x4(t) is a scaled and repeated version of the spectrum
of z(t), with repetition frequency 27 /7. Assuming (arbitrarily) a triangular spectrum
for z(t), bandlimited to |w| < w,y,, we have:

Xs(W

-3n/T -2n/T /T 0 T 21T 3IN/T

(b) The Fourier transform of z4(t) is given by

X.(w) = / T (Bt dt = / TS w0l — nT)e  dt

n=—oo
o0

p /_Oo w(t)o(t —nT)e ™ dt = > a(nT)e "

n=—0oo n=—oo



by the sifting property of delta functions. The ideal reconstruction filter has frequency
response
<
H(w) = { T for |w| <7/T

0 otherwise

so, taking the inverse Fourier transform of H(w)X(w) we can recover the original
signal as follows:

1 oo ‘ T w/T .
x(t) = — H(w) X (w)e™! dw = — X, (w)e™" dw
21 J_ o 21 J o
T n/T X A T 00 w/T ]
_ —iwnT jiw _ tw(t—nT)
) nz_oo z(nT)e ™" dw o nz_oo z(nT) /_W/T e dw
T > iw(t—nT) 17/T 7T > ir(t—nT)/T _ ,—in(t—nT)/T
= — x(nT) ‘ = 5= z(nT) : ' !
2m = i(t=nT)] _ g 27 i(t —nT)
T < 2isinm(t —nT)/T = sinw(t —nT)/T
— _— T —
o n:_oo“”(” N P n;@ ()= =T
- t—nT
= Z x(nT) sinc% : 8]

(c) The reconstruction formula in (b) allows the original signal to be derived from its
samples by summing a number of sinc pulses, with one pulse for each sample. This is
infeasible for real-time applications, since the reconstructed signal at time ¢ depends
on an infinite sum over all past and future samples. The sinc function is also rather
expensive to compute.

xo(t) is a zero-order hold reconstruction, found by passing the weighted impulse
train z4(t) through a filter with the following impulse and frequency responses (the
frequency response is a sinc function, as given in the electrical data book):

h(t) H@)
1 T
0 T t 0l 2n w
T

x1(t) is a first-order hold reconstruction, found by passing the weighted impulse
train z4(t) through a filter with the following impulse and frequency responses (the
frequency response is a sinc? function, as given in the electrical data book):

10



h(t) H@)
1 T
T 0 Tt 0/ 2n "
T

In practice, the first-order hold reconstruction is implemented with a T’ second delay,
so that the filter’s impulse response starts at ¢ = 0 and not t = —T.

Examiner’s remarks: This question tested the candidate’s knowledge of sampling
and reconstruction techniques. The mathematics involved finding a simple forward
Fourier transform, then a slightly more tricky (in that it required five lines of algebra)
inverse Fourier transform. The level of understanding of this material was extremely
poor. Most candidates could not even deduce the maximum sampling period to
avoid aliasing. When asked to sketch the spectrum of the sampled signal, around
half the candidates sketched a graph of something (it was hard to tell what) plotted
against time. Only a handful of candidates made a serious attempt at the inverse
Fourier transform. The last part of the question asked candidates to describe filters
for sample-and-hold and linear interpolation filters. Unfortunately, hardly anyone
even attempted this part of the question.

. Fourier transforms, probability density functions.

(a) (i) z(t) can be written as the product of two time-domain signals:
z(t) = coswot X H(t —T/2) ,

where H(t) is a unit pulse of width 7" centred on the origin. The convolution theorem
tells us that

X(w) = %f(coswot) «x F(H(t—1T/2)) .
Now, from the electrical data book we know that
F(coswot) = 7 [6(w — wo) + 6(w + wo)]
and from the shift in time theorem we have
F(H(t—-T/2)=e“TPF(H()) .

Finally, from the electrical data book we know that

F(H(t)) = Tsine (%)

11



Combining this information, we have

1 - T
X(w) = o [0(w — wo) + 6w + wy)] * e 772 Tsinc (%)
7T
_ Z [e—i(w—wo)T/z sinc ((w - WO)T) 4 e~ iwtw)T/2 gip o ((W + wo)T>] 7]
2 2 2
(ii) The modulus of the spectrum looks like this for large and small 7"
small T | X(0)]
T2
W, 0 Wy w
large T | X()]
T2
T T 3
—-W, 0 W, w B3]

(b) (i) The values of X and Y are uniformly distributed inside a 1 x 2 rectangle.

y y y

2+z X-y=2z

2 2 2 ‘

1+ |

‘ 1 2+z |

l-z

-z !

1 |

x-y=z |

2 §

1-z /| |

X-y=z i

i
0 z 1-z 1 X 0 1 X 0 2+z 1 X

O<z<1 -1<z<0 2<z<-1
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For the case 0 < z < 1:

R = Pz<g =0 (02
= s = Ty
For the case —1 < 2z <0:
Fi) = Pz<n= 00T (20)
-6 = =3

The overall probability density function looks like this:

f(2)

1/2

f i I
-2 -1 0 1 z

We have arrived at a valid probability density function, since the area under the
curve is one (by inspection).

(ii) From the sketch above, it is clear that E(Z) = —0.5. This can also be deduced
by B(Z) = E(X) —E(Y) = 05— 1= —0.5.

Examiner’s remarks: The first part of this question asked the candidates to cal-
culate the Fourier transform of a truncated cosine wave (demonstrating spectral
leakage). Recognising that the truncated cosine wave is the product of an infinite
cosine wave and a finite duration pulse, the maths involved copying a couple of for-
mulae from the data book and performing a trivial convolution. However, almost all
candidates attempted to find the Fourier transform by the direct route, and most
got hopelessly lost. The second part of the question asked the candidates to cal-
culate the probability density function (pdf) of Z = X — Y, where X and Y are

13



independent random variables uniformly distributed over different ranges. Very few
candidates arrived at the correct answer, with some even suggesting that a pdf could
take negative values. Even more worrying, only about a quarter of the candidates
could calculate the mean of Z, given the means of X and Y.

. Probability.
(a) (i) The number of faulty items in a sample of 10 would be well modelled by the
Binomial distribution if:

e the probability of selecting a faulty item is p and remains the same as we select

more items;

e cach selection is independent.
Neither of these conditions is strictly true, since we are dealing with a finite popu-
lation of size 500. Thus, the probability of selecting a faulty item depends on the

previous selections. However, with a large population and a relatively small sample,
we would expect the Binomial distribution to be a good approximation.

(ii) The exact probability that the batch is shipped can be calculated by considering
combinations.

P(no faulty items in sample of 10) =
number of ways of choosing 10 non-faulty items from batch

number of ways of choosing 10 items from batch
950, 495!/(485! x 101)  495!/485!

500C, — 500!/(490! x 10!)  500!/490!
495 x 494 X ... x 487 x 486 490 X 489 x 488 x 487 x 436

500 x 499 x ... x 492 x 491 500 x 499 x 498 x 497 x 496

= 0.9035

(iii) The Binomial approximation is much quicker to calculate. If we assume that the
number of faulty items X in a sample is distributed according to X ~ B(10,0.01),
then

P(X = 0) = (0.99)" = 0.9044

(b) (i) The central limit theorem states that a combination of n identically dis-
tributed, independent random variables has a distribution which becomes Normal as
n becomes large, irrespective of how the typical individual is distributed.

We can use the central limit theorem to estimate the probability of different waiting
times for later appointments. This probability depends on the accumulated con-
sultation times of all earlier appointments. Even though each consultation time is
uniformly distributed, the sum of n consultation times will tend to be Normally
distributed as n becomes large.

14



(i) If T have the 9.15am appointment, then I will have to wait for more than two
minutes if the 9am consultation takes longer than 17 minutes. The time taken for
the 9am consultation is uniformly distributed in the range 12 to 19 minutes, so

P(wait more than two minutes) = 2/7 = 0.286

(iii) If T have the 5.30pm appointment, then the time I have to wait depends on the
accumulated consultation times of the 34 previous appointments. Each consultation
time is uniformly distributed with mean 15.5 minutes and variance 49/12 (see the
mathematics data book for the mean and variance of a uniform distribution). Assum-
ing consecutive consultation times are independent, the time X for 34 consultations
will have mean 34 x 15.5 = 527 minutes, and variance 34 x (49/12) = 138.8 minutes.
The central limit theorem tells us that the distribution of X will be approximately
Normal, so X ~ N(527,/138.8). I will have to wait more than two minutes if X
exceeds 512 minutes (8 hours and 32 minutes).

We now normalise the limiting time of 512 minutes, to see where it lies on the
standard Normal curve:

012 — 527
V138.8

So there is an 89.9% chance that I will have to wait more than two minutes for my
5.30pm appointment. The principal assumption we have made is that the doctor
never has to wait for the patient: we have assumed that the patient is always in the
waiting room, even if the doctor is ahead of schedule.

=—1.273 and ¢(—1.273) =1 —0.899

Examiner’s remarks: The first part of this question tested the candidates’ under-
standing of the Binomial distribution and its application to sampling problems. The
second part concerned the central limit theorem and the use of the Normal distri-
bution. Understanding of this material was generally good. Most candidates could
manipulate the Binomial distribution, though many thought it a perfect model for
sampling-without-replacement scenarios. Most could quote the central limit theo-
rem and knew more or less how to use the Normal tables, though the usual lack of
attention to detail meant that few managed to get the right answer.

Andrew Gee
June 2002
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