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Section A

1 (a) Operation without steam injection :

A

(3) Exhaust
Combustor
2
Air (1) ) @
Power
C T output
For isentropic expansion in the turbine,
-0y 1 (0.35/1.35)
Tys = T (ﬂ) = 1450 x (_) = 6669 K
D3 20

Actual turbine outlet temperature is,
Ty = T3 - Ny (T3-Tyg) = 1450 — 0.85%x(1450-666.9) = 7844 K
Turbine power output is,
W, = my c,(I3 ~T4) = 45x1.10x (1450 - 784.4) = 32.95x 10° kW = 32.95 MW
For isentropic compression in the compressor,

20 (0.35/1.35)

(r=D/y
) = 290 x (T) = 630.5K

T = Tl(&
P

Actual compressor outlet temperature is,

=1+ S =) _ g, (6305-290)

Nc

= 690.6 K

Compressor power requirement is,
We. = my c,(T; -T}) = 45%x1.1x(690.6 -~ 290) = 19.83x10° kW = 19.83 MW
Heat input rate is,
Q = c,(I3 -T;) = 45x1.1x (1450 - 690.6) = 37.59x10° kW = 37.59 MW
Nett power output and thermal efficiency:

W = Wy - W, = 3295 -19.83 = 13.12 MW






(b) Operation with steam injection. (7-s) diagram for HRSG :

A Exhaust gas

From the saturated steam tables at 20 bar, 7,=212.38 °C =485.5 K. Also, A, =908.5 kl/kg.
From the superheated steam tables at 20 bar and 450 °C, Ay =3358.2K.
Pinch-point temperature difference is 5 °C. Hence, Ts = 485.5 + 5 =490.5 K.

To find the steam mass flowrate #1g, apply the SFEE down to the pinch-point. Note that,
with steam injection, the turbine outlet temperature, 74 = 784.4 K, is unchanged. Hence :

(my+ mg)e,(Ty - Ts) = g (hy -hy)
(45 + mg) x1.1x(784.4 - 490.5) = mg(3358.2 - 908.5)
mg = 6.84 kg/s
Turbine power output with steam injection is,
Wy = (i, +ritg)c, (T3 = T,) = (45+6.84) x 1.1x (1450 ~ 784.4) = 37.96 MW

The compressor power requirement is unchanged at 19.83 MW. Hence, the nett power output
with steam injection (neglecting the feed pump work) is :

W = Wy -Wy = 37.96 - 19.83 = 18.13MW (Increased from 13.12 MW)  [10]



(i) FALSE: Entropy is an extensive, not an intensive property.

(ii) FALSE: The heat transferred to a closed system undergoing a reversible process is,

2
f T dS which does not equal (755, — T151) unless 7 is constant.
1

(iii) FALSE: The entropy of a closed system will decrease if the system is cooled.

(iv) FALSE: A reversible, adiabatic process is isentropic and the work transfer has no
effect on the system entropy.

(b) (i) In winter, the heat pump operates as shown below :

House 77 =293.15K

O

O W

v O

Surroundings 7o =273.15K

Applying the Clausius inequality to the cyclic heat pump (noting the direction of heat flows) :

L _4 <=0
Iy T
Using the First Law then gives :
—QI_W—QLSO — WzQ'lTl—TO
To Ti T

The required rate of heat transfer to the house in kW is given by,

2400

: 2
= T - T.) =2(T -T
O 3600(1 0) 3(1 0)

Therefore, the power input is,

T2 2
wo» 20i=T)” _ 2x3207 90w
3 T, 3 x 293.15




(i) In summer, the heat pump operates as shown below :

Surroundings To> T

O

Y

House 77 =293.15K

Applying the Clausius inequality to the cyclic heat pump (noting the direction of heat flows) :

9 _ % <0
LT
Using the First Law then gives :
QI__QI-‘-WSO — Qll-——To_Tl SW
4 Ty h

The required rate of heat transfer from the house in kW is given by,

2400

9= 3500

(TO—TI>=-§-<T0—71>

Hence, with W= 1.2 kW :

(T,-T)* = 3LW _ 3x293.15x12 _ 5277 (°CY
2 2
Thus,
To = T) + +/527.7 = 316.1K = 43.0°C [6]



The following is based on the steam tables. Using the chart is quicker but less accurate.

(i) From tables at p; = 100 bar, 75 =550 °C : A3 =3502.0 klJ/kg, s3=6.758 kJ/kg K.

Note that the turbine expansion is isentropic.

At condenser pressure of 0.06 bar, s, = 0.521 kl/kg K, s, = 8.329 kJ/kg K. Hence :
6.758 = 0.521(1-x,) + 8.329x, — xs = 0.7988

At condenser pressure, ks =151.5 kJ/kg, h, =2566.6 klJ/kg. Hence :
hy =151.5%x(1.0 - 0.7988) + 2566.6x 0.7988 = 2080.7 kl/kg [4]

(i) The mass flowrate of steam is (neglecting the feed pump work),

3
_ Power _ Power _ _ 500.0x10 = 351.8 kg/s [2]

mS
W, hy - h,  3502.0 - 2080.7

(b) (1) Rate of heat transfer in the condenser :

O = (b, - h) = 351.8x(2080.7 - 151.5) = 678.69x10°> kW

From the SFEE, the mass flowrate of cooling water is given by,

. ) \
W, = Q _ 0 _ 678.69x10° oo kes "
(hw,out _hw,in) cpw (Tw’om - Tw,in) 418 x 10




(it) If the total length of tubing of diameter D is L, then the rate of heat transfer is given by,

Q = wDLUAT,

where U is the overall heat transfer coefficient and AT, is the Log Mean Temperature
Difference. The saturated vapour temperature at 0.06 bar is 36.16 °C and hence, from the
definition of AT}, in the Thermofluids Data Book,

AT, - ATu=AT _ (3616-150) - (G6.16-250) _ |5 (o
In(AT,, /AT, ) In(21.16/11.16)

The total length of condenser tubing required is thus,

~ 0 ~ 678.69 x 10
aD U AT, x0.03x12.0x15.63

= 3839x10°m = 38.39km [5]

(ii1) For steady flow, the entropy equation for a CV with multiple inlet and outlet streams is,

Emi(si,out = Siin) = f 'dTQ + Sirrev

Surface

The specific entropy of the steam at turbine outlet is s4 = s3 = 6.758 kJ/kg K. Hence, the
contribution from the steam side is,

iy (s;-54) = 351.8x(0.521 - 6.758) = - 2.194 x 10° kKW/K

There is no pressure loss in the tubes and ¢, for water is constant. From 7ds = dh — vdp,

) outd out dhw out C dT 3 | Tw,out
Swou ~ Swin = f Sy = f T = T = Cpylll
in in in w,in

Hence, the contribution from the water side is,

| . T 298.15
m,, (Sw,out —SW,l'n) = chPW ln[ ;’Out) B 16237)(418)(111( 288.15

w,in

) = 2315 x 10° KWK

There is no heat loss from the condenser casing to the environment. Therefore, the nett rate of
entropy creation due to irreversibility in the condenser is,

Sirey = 2.315x10° = 2.194x10° = 121 kW/K [5]

This is due to the temperature difference between the steam and the cooling water.



Section B
4 (a) Full dynamic similarity requires that both the Mach number and the Reynolds num-
ber are matched for the full-size aircraft and the model. Using subscript 'r’ for the real aircraft

and 'm’ for the model.

Mach Number similarity;

vRT. ~RT,,

Vm = V;\/ Tm/Tr (1)

Reynolds number similarity;

prVeLy P VL

Hr 227
Pm _ ﬁ‘ﬁ& Ly (2)
pr - /1/7” Vm Lm

This relates to the density ratio which depends on the pressure and temperature. To get an
expression for the pressure we use the perfect gas law which leads to;

Pm Pm T,

b o ®)

T

Pr Pr T

and substituting this into (2) and also using (1) and the expression for the dependence of the
viscosity on the temperature we find

pm T T T, +117 [T, L, (4)
or Tw T +117 72 \ T, L,
Now in terms of our new symbol
- 5
o= T
Dm 1+117/T, L,
b g2 ¥ DT/T: ©)

o " a+117/T, L,

which due to a convenient choice of the value of T, in this problem and putting in the scale-factor
of 8 and the value of T, becomes

m 2
P _ 802 3/

o a+1/2 (7)

(b)

In this part of the problem T, = 288K and T, = 234K hence o = 1.231 which leads to
Pm/pr = 10.51 and hence p,, = 354kN/m?. For interest this is about 3 atmospheres which is
quite achievable in readily-available wind tunnels. The velocity is V,,, = \/aV, = 305m/s.



(c)
Since Cf, = f(M, Re) then complete dynamic similarity means the lift coefficient will be the
same for the real aircraft and the model.

Lift,, Lift,
pmVELE, VL
Lifty,  pmVZ2 L2
Lift, e V2I2
Pm LG
pr L2
— 10.51/64 = 0.164 (8)

(d)

For the last part we make use of the equation for the pressure ratio derived above in terms
of the temperature ratio a but this time we fix the pressure ratio and solve for «. This turns
out not to be too hard for this problem since it reduces to a quadratic equation for .. The
pressure ratio has been chosen to be exactly three to simplify the maths . Hence we get

1202
a+1/2
o ~a/4-1/8 = 0

3 =

©)

The solution drops out nicely due to careful choice of the numbers. There is one positive

solution and one negative.
it 1
2

S

o =

b

(10)

N
e

Only the positive solution is sensible and we find o = 1/2 and hence T,,, = 117K. This is
quite cold but there are large cryogenic wind-tunnels available which could achieve this. The
velocity in this case is 194.5 m/s. For interest (not needed for the exam question) the basic
power required to run the wind-tunnel (excluding coolers and pumps to pressurize etc.) scales
with pV* and for these two cases the power required in the first case is almost five times that
required in the very cold case in part c¢) so there are advantages to cooling the working section.
It is also convenient in this case that the working section is maintained at a pressure close to
standard atmospheric pressure since this simplifies the structural design of the working-section
and makes access from outside easier.
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5  (a) Use mass conservation which in this case of incompressible flow of constant density
is the continuity equation.

nD}  wD3
U14 —U24
D2

Uy = Uy =2 1

2 ID% ()

(b) Bernoulli equation

A+ 3oUr = po+ LpUs
P2 = p1+ %ﬂ(UE - U22)
= p1+ 3pUz(1 — (D1/D2)*) 2)

(c) Use the momentum equation. Forces on the control volume are due to the pressures
on each end - we ignore friction which would result in additional tangential forces on the

outside of the cylindrical control volume. The forces are then balanced by the rate of change
of momentum.

Y Forces = Rate of change of momentum
nD? 7TD D2
(P2 —po)— = —p—2Us+p— UL

(P2 —p3) = PUl (1 - (Dl/D2) )
ps = P2 — PU12(1 - (DI/D2)2)
= p1+ %ﬂUf(l — (D1/Dy)* + pUi((D1/D2)* — 1)

D\® /D
= Lo () L (2
Pr=3pUi [l 2(D2) +(D2>

- - (2)' 1) @

Difference in flux of mechanical energy

= (m/p)AF,

7rD2
= Ul_(pl D3)

nD? [ D? ?
= pUi—2 <ﬁ—1> (4)

This lost mechanical energy is converted into internal energy of the fluid so the fluid heats up
very slightly.
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6 (a) The only forces in the x-direction are due to the component of the gravitational

—— = 14+d1/0y .dy

dyI 71— (p.dx.dy.1).g.sinf

‘——_T
>
dx

Figure 1:

force along the plate and the difference in shear stress between the top and the bottom of the
element. Summing the forces in the z-direction and equating to zero since the element is in
equilibrium (not accelerating),

(r+071/0y.dy).dz.l — 7.dz.1 + (p.dz.dy.1)gsinfd = 0
(1)

Expand and simplify dividing through by dz.dy and rearranging gives the answer.

( Note: Strictly we start with dz and dy as small finite quantities and divide through then
take the limit as they go to zero. If dy is finite then the expansion of 7 with ¥ would involve
higher order terms (and derivatives) which disappear in the limit as dy — 0. Hence the above
is correct but not mathematically rigorous.)

The only difference between the two layers is the density and so the only difference in the
equation is the change of density.

(b)Upper layer. To find the shear stress integrate the equation from part a) with respect
to y after substituting p = py for the case of the upper layer.

T = —pegsinfy+C (2)

where C' is a constant which may be found from the boundary condition that at y = he, 7 =0
since it is a free surface and the air above the upper film offers no resistance to the flow and
hence C = pogsin Bhy which leads to the shear stress variation in the upper layer which is

Tu

pegsinb(hy — y) (3)

Now at the bottom of the upper layer y = h; and so the shear stress is

Ty =h) = pagsinf(hy — hy) (4)

This does not depend on the viscosity of the fluid (or the density of the lower layer) since it
is simply the force per unit area required to support the weight of the upper layer. The mass

12



of the upper layer per unit area is ps(he — h1) and the component of the weight of this upper
layer parallel to the plane is then just pagsinf(hy — hq). Changing the viscosity would lead to
a change in the velocity variation in the layer which would adjust itself so that the shear stress
was sufficient to support the weight of the upper layer (alternatively the thickness of the layers
would change).

(c) Lower layer. To find the shear stress integrate the equation from part a) with respect
to y after substituting p = p; for the case of the lower layer.

7 = —pgsinbfy+C (5)

where C is a constant which may be found from the boundary condition (or matching condition)
that at y = hy, 71 = 7,(y = h1) which gives C = pagsin6(hy — hy) + p1gsin 6h; which leads to
the shear stress variation in the lower layer which is

T = pigsinb(hy —y) + p2gsin@(hy — hy) (6)

(d) Since the fluid is Newtonian then 7 = pdu/dy and substituting into the expression for 7
we can then integrate again to find the velocity.

p19sinf

P29 sin @
U = T(hly — 3y +

(he = hi)y+ D (7)

where D is a constant to be found from the boundary condition which for the lower layer is
u=0at y =0 and hence D =0 so

p1gsin 0 Pagsin f
= —lgl/« (hy — 3%) + =—

(ha — hy)y (8)

and finally we can find the value of the velocity at the interface by substituting y = h; giving

p1gsiné P29 sin 6

1Rt + T(h2 — hi)hy (9)
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