ENGINEERING TRIPOS PART IB

Paper 5 ELECTRICAL ENGINEERING Crib

Q1
(a) Operating point. For $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{e}}=20 \mathrm{~mA}$, we get $\mathrm{R}_{\mathrm{C}}=10 / 20 \cdot 10^{-3}=500 \Omega$.

For $\mathrm{R}_{\mathrm{B}} . \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} / 250=20 / 250=80 \mu \mathrm{~A}$.
$\mathrm{R}_{\mathrm{B}}=(20-0.7) / 0.08=241 \mathrm{k} \Omega$
b) Limitations. The bias point is heavily dependent on the transistor's current gain h_{FE} which may vary over a range 5:1 in typical products, and also on temperature.
Improvements are $1 /$ connect R_{B} to the collector; negative feedback enhances the stability; or $2 /$ set up a potential divider for V_{g} and include an emitter resistor. This needs to be bypassed with a suitable capacitor to maintain the a.c. gain.
c)

The Thévenin equivalent of the output circuit is a voltage source of $500 \times \mathrm{h}_{\mathrm{fe}} \mathrm{i}_{\mathrm{b}}$ in series with a Thévenin resistance of 500Ω. Capacitors C_{1} and C_{2} may be ignored at mid-band. Hence the optimum load for maximum power transfer is $\mathrm{R}_{\mathrm{L}}=500$ ohm.

Mid-band voltage gain is then,
$-\mathrm{h}_{\mathrm{fe}} \cdot\left(1 / \mathrm{h}_{\mathrm{ie}}\right) \cdot(500 / / 500)=250 / 4=62.5$
(d)

At low frequencies, C_{1} and C_{2} have large impedances $\propto 1 / \omega C$ and in conjunction with circuit resistances, each forms a potential divider. At low frequencies C_{1} causes the base current to be reduced; C_{2} limits the output current and hence the voltage developed across the load is reduced.

The output voltage v_{O} is developed across the terminals of R_{L}, as before.
Examiner's note: a common error was to take v_{O} across the series combination of C_{2} and R_{L}
$i_{b}=\frac{v_{i}}{h_{i e}+1 / j \omega C_{1}}$
$v_{0}=\frac{R_{L}}{R_{L}+R_{C}+1 / j \omega C_{2}} . h_{f e} \cdot R_{c} i_{b}$

Hence

$$
G=-\frac{h_{f e} R_{C} R_{L}}{\left(h_{i e}+1 / j \omega C_{1}\right)\left(R_{L}+R_{C}+1 / j \omega C_{2}\right)}
$$

Check: as $\omega \rightarrow$ infinity, $\mathrm{G} \rightarrow-\frac{h_{f e}}{h_{i e}}\left(R_{C} / / R_{L}\right)$ which is the mid-band gain.
At $100 \mathrm{~Hz}, \omega=628$
$\mathrm{G}=-7.68+15.91 \mathrm{j}$
$|G|=-17.67$

Q2

a/ Let v_{+}and v_{-}be the voltages at the + and - inputs of the op-amp. If $v_{\text {out }}=G\left(v_{+}-v_{-}\right)+G^{\prime}\left(v_{+}+v_{-}\right)$, then $C M R R=G / G^{\prime}$.
This is important because two signals $\mathrm{v}_{1}, \mathrm{v}_{2}$ can always be broken down into components
$v_{1}=v_{c}+v_{d} / 2$, and $v_{2}=v_{c}-v_{d} / 2$, where v_{c} is the average or common-mode component and v_{d} is the difference, or differential component. In precision instrumentation it's often necessary to extract a weak signal in the presence of strong interference, often in the form of a common-mode signal. If the wanted signal can be developed as a differential signal, strong discrimination can be obtained using a differential amplifier with high CMRR.
b/ If v_{+}and v_{-}are the voltages at the + and - inputs of the op-amp, then
$\mathrm{v}_{+}=\mathrm{R}_{3} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{v}_{\mathrm{q}}, \mathrm{v}_{-}-\mathrm{v}_{0}=\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{v}_{\mathrm{p}}$. For $\mathrm{G} \rightarrow$ infinity, then $\mathrm{v}_{+}=\mathrm{v}_{-}$ Thus $0=R_{2} /\left(R_{1}+R_{2}\right)\left(v_{p}-v_{q}\right)+R_{1} /\left(R_{1}+R_{2}\right) v_{0}$ and $v_{0}=R_{2} / R_{1}\left(v_{q}-v_{p}\right)$
c/ In Fig. 3, $\mathrm{v}_{\mathrm{a}}=\mathrm{v}_{\mathrm{q}}+\mathrm{v}_{\mathrm{c}}, \quad \mathrm{v}_{\mathrm{b}}=\mathrm{v}_{\mathrm{p}}+\mathrm{v}_{\mathrm{c}}$.
Hence, $\mathrm{V}_{0}=\mathrm{R}_{2} / \mathrm{R}_{1}\left(\mathrm{v}_{\mathrm{q}}-\mathrm{v}_{\mathrm{p}}\right)=\mathrm{R}_{2} / \mathrm{R}_{1}\left(\mathrm{v}_{\mathrm{a}}+\mathrm{v}_{\mathrm{c}}-\mathrm{v}_{\mathrm{b}}-\mathrm{v}_{\mathrm{c}}\right)=\mathrm{R}_{2} / \mathrm{R}_{1}\left(\mathrm{v}_{\mathrm{a}}-\mathrm{v}_{\mathrm{b}}\right)$
d/ Non-idealities are finite gain, finite bandwidth, finite input resistances and finite output resistance, and distortions. All of these limit the accuracy of the assumption that $v_{1}=v_{2}$. Finite gain is the biggest effect, and this would limit the cancellation.
e/ Differential gain required $=\frac{5}{50 \times 10^{-3}+\left(-50 \times 10^{-3}\right)}=50$.
This is equivalent to R_{2} / R_{1}, so $\mathrm{R}_{4}=\mathrm{R}_{2}=500 \mathrm{~K} \Omega$.
f/ The voltage gain G1 of Fig. 4 is given by $\mathrm{G} 1=1+9000 / \mathrm{R}$.

Connect two instances of Fig. 4 at each input of Fig. 3, as shown. The resultant circuit is the widely used Instrumentation Amplifier. Because of the symmetry of the circuit there is no need for the two resistors R to be grounded. This reduces the common mode gain. The extra stages:

- provide additional gain
- ensure inputs $a \& b$ drive high impedance
- enhance the CMRR.

Overall gain can be set by adjusting only one resistor, R.
With R2=500 k $\Omega, R 1=10 \mathrm{k} \Omega$, the differential gain of Fig. 3 is 50 . To achieve overall differential gain of 1000 , the input amplifiers must contribute additional gain of 20 . Hence choose R such that $1+9000 / R=20$, so $R=473.7 \Omega$, or resistor $2 R=$ 947Ω.

Examiner's note: several candidates connected an instance of Fig. 4 at the output of Fig. 3. This would achieve more gain but would not improve the CMRR or input impedance.

Qu

$\mathrm{V}_{\mathrm{L}}=\sqrt{ } 3 \mathrm{~V}_{\text {ph }}$. angle 60
$\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{ph}}$
b/ Star $-\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}} / 3^{1 / 2}=240 \mathrm{~V}$
$\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} /\|40+30 \mathrm{j}\|=240 / 50=4.8 \mathrm{~A}$
$\mathrm{P}_{1}=3 \mathrm{I}^{2} \mathrm{R}=\mathbf{2 7 6 5} \mathrm{W}$
$\mathrm{Q}_{1}=3 \mathrm{I}^{2} \mathrm{X}=\mathbf{2 0 7 4} \mathrm{VA}$
Delta
$\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}}=415 \mathrm{~V}$
$\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} /|60+80 \mathrm{j}|=415 / 100=4.15 \mathrm{~A}$
$\mathrm{P}_{2}=3 \mathrm{I}^{2} \mathrm{R}=3100 \mathrm{~W}$
$\mathrm{Q}_{2}=3 \mathrm{I}^{2} \mathrm{X}=\mathbf{4 1 3 3} \mathrm{VA}$
$P_{\text {tot }}=\mathbf{5 8 6 5} \mathrm{W}, \mathrm{Q}_{\text {tot }}=\mathbf{6 2 0 7} \mathrm{VA} \quad$ hence $\mathbf{S}=\mathbf{8 . 5 5} \mathbf{~ k V A} \quad$ pfactor $=P / S=\mathbf{0 . 6 8 7}$
c)
$\mathrm{I}_{\mathrm{L}}=\mathrm{S} /\left(\sqrt{3} . \mathrm{V}_{\mathrm{L}}\right)=8550 /(1.732 \mathrm{x} 415)=11.87 \mathrm{~A}$
Line Losses are $\mathrm{P}^{\prime}=3 \mathrm{I}^{2} \mathrm{r}=3(11.87)^{2} 0.8=338 \mathrm{~W}$ $\mathrm{Q}^{\prime}=3 \mathrm{I}^{2} \mathrm{x}=1352 \mathrm{VA}$

Hence new $\mathrm{P}=338+5865=6203 \mathrm{~W}$, new $\mathrm{Q}=7559 \mathrm{VA}$ new $\mathrm{S}=9,778 \mathrm{~W}$
$\mathrm{V}($ supply $)=\mathrm{S} / \sqrt{ } 3 \mathrm{I}_{\mathrm{L}}=9778 / 1.732 \times 11.87=\mathbf{4 7 5} \mathbf{~ V}$
d) For $\mathrm{pf}=0$, then $\mathrm{P}_{\text {tot }}$ remains same, but $\mathrm{Q}_{\text {tot }}=0$, so $\mathrm{S}_{\text {tot }}=\mathrm{P}_{\text {tot }}=5865 \mathrm{~W}$.
$\mathrm{I}_{\mathrm{L}}=\mathrm{S} / 3^{1 / 2} \mathrm{~V}_{\mathrm{L}}=5865 / 1.732 \times 415=\mathbf{8 . 1 5} \mathbf{A}$
New losses $\mathrm{P}^{\prime}=159.5, \mathrm{Q}^{\prime}=638 \mathrm{VA}$
Hence $\mathrm{P}^{\prime \prime}=6025 \mathrm{~W}, \mathrm{Q}^{\prime}=638 \mathrm{VA}, \mathrm{S}^{\prime \prime}=6059 \mathrm{~W}$
New $V=S ">/ 3^{1 / 2} \mathrm{I}_{\mathrm{L}}=6059 / 1.732 \times 8.15=\mathbf{4 2 9 . 2} \mathbf{V}$

Q4

a) $\mathrm{V}_{\mathrm{L}}=22 \mathrm{kV}, \mathrm{V}_{\mathrm{ph}}=22 / 1.732=12.70 \mathrm{kV}$
$\mathrm{I}_{\mathrm{ph}}=\mathrm{I}_{\mathrm{L}}=\mathrm{P} /\left(1.732 \times \mathrm{V}_{\mathrm{L}} \cos (\mathrm{phi})=320 / 1.732 \times 22 \times 0.8=\mathbf{1 0 . 5 0} \mathbf{~ k A}\right.$
$\mathrm{IX}=1.5 \times 1.2=12.6 \mathrm{kV}$
$\mathrm{E}^{2}=\mathrm{V}_{\mathrm{ph}}{ }^{2}+(\mathrm{IX})^{2}+2 \mathrm{~V}(\mathrm{IX}) \cos (90-\mathrm{phi})=12.7^{2}+12.6^{2}+2 \times 12.6 \times 12.7 \times 0.6=$ 512.1
$\mathrm{E}_{\mathrm{ph}}=22.63 \mathrm{kV}, \mathbf{E}_{\mathbf{L}}=\mathbf{3 9 . 2} \mathbf{~ k V}$
b) $\mathrm{H}=\mathrm{IX} \cos \mathrm{phi}=12.6 \times 0.8=10.08 \mathrm{kV}$
$H^{\prime}=(240 / 320) \times 10.08=7.56 \mathrm{kV}$
$\mathrm{E}^{\prime}{ }^{2}=12.7^{2}+7.56^{2} \quad \mathrm{E}^{\prime}{ }_{\mathrm{ph}}=14.78 \mathrm{kV} \quad \mathbf{E}_{\mathrm{L}}=\mathbf{2 5 . 6} \mathbf{k V}$
c)

power limit set by $350 / 400=0.875$ cos phi1 $=\mathbf{0 . 8 7 5}$
excitation limit set by
$\mathrm{E}_{\mathrm{ph}}=40 / 1.732=23.1 \mathrm{kV}$
$3 \mathrm{VI}=400, \quad 3 \mathrm{~V}^{2} / \mathrm{X}=403, \quad 3 \mathrm{VE} / \mathrm{X}=733$
so $733^{2}=403^{2}+400^{2}+2 \times 403 \times 400 \cos ($ phi $2+90)$
$\cos ($ phi 2$)=\mathbf{0 . 7 4 6}$

(b) no load test $\quad 1500 \mathrm{rpm}, \mathrm{s}=0 \quad \mathrm{R}_{2}{ }^{\prime} / \mathrm{s}=$ infinity
assume $R_{i} X_{m}$ are much larger than X_{1} and R_{1}.
$3 \mathrm{~V} / \mathrm{R}_{\mathrm{i}}=600 \mathrm{~W}, \quad \mathbf{R}_{\mathrm{i}}=\mathbf{8 6 1} \mathbf{~ o h m}$.
$\mathrm{I}^{2}=\mathrm{I}_{\mathrm{X}}{ }^{2}+\mathrm{I}_{\mathrm{R}}{ }^{2} \quad 16 / 3=(415 / \mathrm{X})^{2}+(415 / 861)^{2} \quad \mathbf{X}=\mathbf{1 8 4} \mathbf{~ o h m}$

Locked rotor test $\quad 0 \mathrm{rpm}, \mathrm{s}=1$.
$\mathrm{X} 1=\mathrm{X} 2^{\prime}$
$3 \mathrm{I}^{2}(\mathrm{R} 1+\mathrm{R} 2)=333, \quad \mathrm{R} 1=2$, so $\quad \mathbf{R 2}^{\prime}=\mathbf{3 . 2} \mathbf{~ o h m}$
$\frac{30^{2}}{(2 X 1)^{2}+(2+3.2)^{2}}=\left(\frac{8}{\sqrt{3}}\right)^{2} \quad$ so $2 X 1=64 / 3 \quad \mathbf{X 1}=\mathbf{X} \mathbf{2}=\mathbf{1 . 9 5} \mathbf{~ o h m}$
c)
speed $=1480 \mathrm{rpm}$,
$\mathrm{s}=1500-1480 / 1500=\mathbf{0 . 0 1 3 3}$
$\mathrm{Z} 1=\mathrm{R} 1+\mathrm{j} \mathrm{X} 1+\frac{j X m\left(j X 2^{\prime}+R 2^{\prime} / s\right)}{j\left(X m+X 2^{\prime}\right)+R 2^{\prime} / s}$
$\mathrm{Z} 1=2+\mathrm{j} 1+(\mathrm{j} 100(2 / 0.0133+\mathrm{j} 1) /(\mathrm{j} 101+2 / 0.0133+\mathrm{j} 1)=\mathbf{4 7 . 9}+\mathrm{j} 70.1 \mathbf{o h m}$
$\left.\mathrm{I}_{\mathrm{L}}=1.732 \times 415 / 147.9+\mathrm{j} 70.1\right)=1.732 \times 4.89=\mathbf{8 . 5} \mathbf{A}$

Q6

The characteristic impedance of a line Z_{0} is the ratio of volts to current of a unidirectional wave on the transmission line.
$\mathrm{C}=80 \mathrm{pF} / \mathrm{m}, \mathrm{L}=0.2 \mathrm{uH} / \mathrm{m} \quad$ so $\mathrm{Z}_{0}=(\mathrm{L} / \mathrm{C})^{1 / 2}=\left(2.10^{-7} / 80.10^{-12}\right)^{1 / 2}=\mathbf{5 0} \mathbf{~ o h m}$
Phase velocity $=1 /(\mathrm{LC})^{1 / 2}=1 /\left(2.10^{-7} \times 80.10^{-12}\right)^{1 / 2}=\mathbf{2 . 5} \times 10^{8} \mathbf{m} / \mathbf{s}$.
For $1=20 \mathrm{~m}$, wavelength should be a least 16 times longer, or 320 m .
So $\mathrm{f}=2.510^{8} / 320=7.81 \mathbf{1 0}^{\mathbf{5}} \mathbf{~ H z}$.
b) initially, line appears to have an infinite load.

Incident wave has
$V=\frac{Z_{0}}{Z_{0}+Z_{S}} V_{S}=\frac{50}{50+150} .16=4 V$
c) incident power $=4^{2} / 50=\mathbf{0 . 3 2} \mathbf{W}$
i) $\mathrm{Z}_{\mathrm{L}}=$ infinity. reflection coef $=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{\infty-50}{\infty+50}=1$

Hence reflected power $=0.32 \mathrm{~W}$
ii) $\mathrm{Z}_{\mathrm{L}}=0$. refl coef $=\frac{0-50}{0+50}=-1$
hence reflected power $=0.32 \mathrm{~W}$, also
iii) $\mathrm{Z}_{\mathrm{L}}=50 \Omega \quad \mathrm{r}=\frac{50-50}{50+50}=0 \quad$ so reflected power $=0 \mathrm{~W}$

For $\mathrm{Z}_{\mathrm{L}}=150, \mathrm{r}=\frac{150-50}{150+50}=0.5$
$\mathrm{Z}_{\mathrm{S}}=150$ ohm, also, where $\mathrm{r}=0.5$
So wave loses 50% of volts magnitude at reflections at each end.
Propagation time $=20 / 2.10^{8}=0.1$ us

Q7
a) Intensity $=$ gain \cdot power $/$ surface area $=2000 \times 25 / 4 \pi\left[2.510^{7}\right]^{2}=6.37 .10^{-12}$ $\mathrm{W} / \mathrm{m}^{2}$

Peak power at antenna $=$ power density x area $=2 \mathrm{x}=12.7 .10^{-12} \mathrm{~W}$
All power goes to receiver for perfect matching

$$
I^{2} \mathrm{R}=12.7 .10^{-12} \quad \mathrm{I}=5.0 \times 10^{-7} \mathrm{~A}
$$

b)
$\mathrm{H}=\mathrm{u}_{\mathrm{y}} \mathrm{H}_{0} \exp (\mathrm{jwt}-\mathrm{jkz})$
The Maxwell eqn for free space is $\frac{\partial D}{\partial t}=\frac{\partial H_{y}}{\partial z}$
So $\mathrm{dD} / \mathrm{dt}=-\mathrm{jk} \mathrm{H}_{0} \quad$ giving

D $=-(j k / j w) H_{0}$

And
$\mathrm{E}=\mathrm{D} / \varepsilon_{0}=(\mathrm{k} / \mathrm{w}) / \varepsilon_{0} \mathrm{H}=1 /\left(\mathrm{c} \varepsilon_{0}\right) \mathrm{H}=\sqrt{\mu \varepsilon} / \varepsilon H=\sqrt{\frac{\mu}{\varepsilon} H}=Z_{0} H$
Or $\mathrm{E}_{\mathrm{z}}=\mathrm{Z}_{0} . \mathrm{H}_{\mathrm{y}}$

