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SECTION A

1 () Imagine the volume ¥ to be composed of a large number of elemental volumes
oV of any shape. The surfaces of these elemental volumes are mostly composed of
common interfaces between adjoining elements, but each element that is at the edge of the
volume will include a small part of the external surface S as part of its own surface. For
each element 8V, the net flux of F is given by (V- F) V. In the interior of the volume, the
flux out of one element is equal to the flux into an adjacent element across the common
interface. All these contributions to the volume integral cancel. It is only at the surface S
that the contributions survive and sum to give the net flux from the whole volume:

/V(V-F)dV:ng-dA

This argument is required in full. It is not sufficient to sum the definition of
divergence over a volume V without noting that contributions from adjacent surfaces of
interior cells cancel.

(b) The volume of air within the device is:

H) Hj Hy (RH;\?
V:/ n? dz = / TR dz—l—/ n( 1) dz
0 0 Hy z
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(c) Gauss’ theorem relates the divergence within the device to the flux across its

surface:
///V-udV://u-n ds // u~ndS+// u-n ds
V S turbine net
- // Upey- & dS+// Uy dS
turbine net
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It is important to state explicitly that V - u can be taken out of the integral on the
LHS because it is uniform within the device:

Hy (RH;
V-u///dV:R-<—U—2HU>
- H \ H, 2 2V1

= V.u = —=nR— (R—ﬂUz——ZHzU1>

H

mRYE (R—}%Uz ~2H2U1>
nR2H, <2 — %)

RH U, —2H2U;

R(2H2 — H Hy)

(d) By Stokes’ theorem, the flux of V -u through a cross-section at z = H; /2 is equal
to the line integral of u around the cross-section’s perimeter, at R:

//S(qu)-n as = %u-dl
2n

_ /o —Uyy-27REg dO
~ 0

because &, and &g are perpendicular.
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2 (a) By inspection, the scalar potential ¢ is equal to fyz -+ C, where C is a constant.
If this is found first, there is no need to show explicitly that V X B = 0. An explicit
calculation would result in:

(b) Because B is a conservative vector field,

(1,1,1)
/(_1,171)3-611 = 01.1,1)~ $-1,1,1)
vl 1,1, — Uy -
= sin(n/2) —sin(~n/2) =2 when f(x) = sin(7x/2)
cos(m/2) —cos(—m/2) =0 when f(x) = cos(mx/2)

I

(c¢) Most candidates simply wrote down V- B = 0 but this only leads to one of the
possible conditions. By Gauss’ theorem:

0://SB~ndS - ///V(V-B) av
=[] (=)

The most obvious condition is that d? f/ dx? =0 throughout the sphere. Another is that

[(d?f/dx?) dx = 0, which leads to the condition that d f/dx is symmetric about the plane
x=0.

(d
C = yB
0=VxC = Vx(yB)
= Yy(VxB)+VyxB
= VyxB

= 0 = VyxVop

If y = g(¢), where g is any differentiable function of ¢ then:

dg
Vy = =V
1 0 ¢
dg
hence VyxV¢p = %Vq) xV¢ =0
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The chain rule must used in the final part. It is not sufficient to state, without proof, that
V¢ and Vg are parallel because, although true, this can be seen by reverse engineering
the solution.
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3 (@) Ify(x,t) =X(x)T(t) then c2X"'T + XT = 0 and therefore:

X//// 1 T
p e
X 2T

There are three possible sets of governing ordinary differential equations for real £,
although most candidates only wrote down the first set:

(D) X" = kX and T = —?k*T

G) X" = —k*X and T = 2K*T

(i) X" =0and T =0

By inspection, (i) must be the correct set of ODEs because it has a harmonic solution
in time. By contrast, (ii) has exponentially decaying (or growing) solutions in time and
(ii1) has no oscillating term in time.

The relations for X and T can be substituted into the ODEs (i) above to confirm that
they satisfy the equations. The relation between w, k and ¢ is k = \/Wc_
(b)
92y . .
E i TK? [ A coskx — Bsinkx + Ccosh kx + D sinh kx|
At x = 0, the constraint that y = 0 implies that 4 4 C = 0.
At x = 0, the constraint that 9%y/9x? = 0 implies that —4 +C = 0.
These can only be satisfied when 4 =C = 0.
At x = L, the constraint that y = 0 implies that BsinkL + DsinhkL = 0.
At x = L, the constraint that 92y/dx* = 0 implies that —BsinkL + Dsinh kL = 0.
This seemed to be the most challenging part of the question. Adding these two equations
together gives D = 0. Then either equation gives k = nx/L, where # is an integer (unless
B =0, which is a trivial solution).
The constraint of zero initial velocity gives:

dy
ot
This implies that Q0 = 0.

Xw[—-Psinwt+Qcoswt] =0

The solution is:
. (AT
y(x,t) = Yy sin (Tx) cos( i)
where Y, i1s some constant for that value of #. Around two thirds of the candidates forgot
that this needs to be summed over all z (i.e. over all mode shapes), noting that @ is also a
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function of n:

o) = 5 Fasin () cos[2F] )
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4 (a) A real symmetric matrix 4 will have real eigenvalues and real, orthogonal

eigenvectors. Therefore, a valid value for a is 2.
(b) det4A =1(3—1) —a(2 —0) =0 for 4 singular. = 2 —2a = 0. Which tells us
thata = 1.

For @ = 1 our matrix becomes

—_ = O

1
3
1

h g
I
R

and eigenvalues are found by solving the equation det(4 — AT) = 0.

— 2 3.4 1|=(1-D[E-V)1-A)~1]-2(1-2)=0

which gives

(1-A)A2=41+3-1-2]=(1-2)A%2 =4 =2(1-2)(A—-4)=0

Giving A =0,1,4.
The largest eigenvalue is therefore 4 and we find the eigenvector corresponding to
this as follows;
ForA =4
-3 1 0 X1

2 -1 1 Xy | =
0 1 3 X3

= 3x;=xp, 2x;—x3+x3=0, x3=3x3

I
o o o

Therefore the normalised eigenvector corresponding to A =4 is

1
+——[1,3,1]7
Wil

(¢) For the matrix 4 we find the eigenvalues and vectors in the usual way:

det(4—AI)=0
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1—-A a 0
= 2 3—-4 11=0
0 1 1-2
— (1-A)[B-2)1—-21)—1]~2a(1-1)=0
—= (1-A)[A%—42+2(1-a)] =0

=lamil=4iv(m;80—®):2i 2(1 +a)

== A

Thus for there to be only 2 distinct eigenvalues, we must have 2 repeated roots.

This can occur if 16 —8(1 —a) =0ie a = —1. For a = —1, eigenvalues are therefore
1,2,2;

OR

if 24 1/2(1+a) = 1. Clearly we need the -ve value, so that 2 — 1/2(1 +a) =1 or
(1+a) =1/2. Therefore @ = —1/2 and in this case eigenvalues are 1,1,3.

For a = —1, we find the eigenvectors corresponding to these eigenvalues as follows:

(A-Ix=0 and (4—-2Nx=0

ForA =1
0 -1 0 X1 0
2 21 xp =10 = —x=0, 2x1+2xp+x3=0, x3=—2x1
0 10 X3 0

Therefore the normalised eigenvector corresponding to A = 1 is,

1
[1,0—27

0
2 1 1 xp | =10 = X]=-X2, 2x1+x3+x3=0, xp=x3
0

Therefore the normalised eigenvector corresponding to A =2 is

1 T
£ [1,-1,-1
7 |
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For a = —1/2 we similarly obtain another set of eigenvectors:

the normalised eigenvector corresponding to A =1 is

1
4+
V5

the normalised eigenvector corresponding to A = 3 is

11,0,—2)7

1 T
+——[-1,4,2
oI ]
Note here that although we have a repeated eigenvalue (in both cases), we only
have one valid eigenvector corresponding to that eigenvalue. A4 is therefore known as a
defective matrix and is therefore not diagonalizable (decomposition process to perform
diagonalisation would fail).

(d) Suppose we take some initial vector, ug. If the matrix is not defective, the
distinct eigenvectors will span the image space, so our ugy can be expanded in terms of the
eigenvectors

ug = 0pen + oX1e] + 0yey

where e; corresponds to the eigenvalue A = i. Thus, when we apply 4 to this
equation multiple times we get

Aug = Oopep+1loje; +H4oueq
A2ll0 = 1206161 +42a4e4
AMuy = 1"oye; +4"0ueq

For large n the 4" clearly dominates and so we have that
Anllo ~ 4" Claey

= e4 < A"u.

Thus, we are able to obtain an estimate for the eigenvector corresponding to the

largest eigenvalue provided our initial guess does have a component in the direction of
this eigenvector.

For A as given in part (b), we can apply this method using the initial value given:

mpj1001 & jl (cont.
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(1 0}'0} '0}
u=Aduy=|2 3 1 0|=11
0 L] [t
1 ollo] [1]
u=Au;=[2 3 1 1|=14
0 Ll 1] 2]
1 0 1 5
uy=Au=|2 3 1 4 | =116
01 1 2 6
110 5 21
w=Auz=|2 3 1 16 | =1 64
01 1 6 22

If we normalise this 4th iteration we obtain an estimate of the eigenvector as

e4 ~[0.296, 0.903, 0.311 ]

this is a reasonable approximation when we compare it to the true eigenvector given
in (b)

eq = [0.302, 0.905, 0.302 ]

with each element of the unit eigenvector being accurate to 1 d.p.

The convergence factor is the ratio |A1]/|A4|, ie the magnitude of the ratio of the
2nd highest eigenvalue to the highest eigenvalue — effectively the error is reduced by this
factor at each iteration (leading term error). In this case the convergence factor is 1/4, so
we expect fairly rapid convergence.
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5 (a) To perform LU decomposition do Gaussian elimination on rows of 4: first add
row 1 to row 2, subtract row 1 from row 3:

2 -1 0 3 1 00 2 -1 0 3
A=} -2 2 1 4 i= 10 0 1 1 -1
2 -2 -1 4 1 0 -1 -1 1
We can then see that /,; = —1 and /31 = 1. Next we add the new row 2 to row 3.

100 2 -1 0 3
=|—-1120 0 11 —1
1 1 0 00 O

So that /3p = —1. The LU decomposition is therefore:

1 00 2 -1 0 3
LU=|-1 10 0 11 -1
I -1 1 0 00 O

For the 4 fundamental subspaces we have:

(1) Column Space: given by columns of independent columns of L (which are first
2 as 3rd row of U is zero):

1 0
= -1, 1
1 ~1

or, we can take the columns of A4 corresponding to the columns of U with non-zero

pivots:

2 -1
= -21, 2
2 -2

(ii) Row Space: given by the row space of U which is clearly the first 2 rows:

2,-1,0,3]7, [0,1,1,-1}F
mpjl1001 & jl (cont.
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(iii) Null space of 4 is the null space of U, therefore

2 10 3711]™M 0
X2

0 1 1 —1 ~lo

o o0 o™ 0
x4

Have 2 equations in 4 unknowns, therefore need 2 free variables, choose x3,x4.
2x1 —x24+3x4 =0,x3+x3—x4 =0.

= x1= ~%x3 —Xx4, X3 = —x3+Xx4 so that

X1 ~—1/2 —1
X2 -1 + 1
=X X
X3 3 1l o
X4 0 1

Which give us the above 2 vectors as a basis for the null space. If we choose

different free variables we get different vectors, so anything which is a linear combination
of the above is allowed.

(iv) The left null space can be found by either finding the null space of AT or by

taking the last row of L™1, or by taking the cross product of the column space vectors
(this is the easiest method). By inspection it is easy to see that L™! is given by

L=

O = =
—_— = O
_— o O

So that the basis for the LNS is [0,1,1]7 .

If we do it by finding the null space of AT we can either straightforwardly gaussian
climinate or do another LU decomposition on A7 .

(b) (1) To find the value of a we integrate the pdf
mpjl001 & j1 (TURN OVER for continuation of Question 5



2 dxd
X,
]é jﬁ P( )0 Y

Therefore o0 = 1/12.
(iD)

E[X] =

E[X] = E[Y] by symmetry.

ElXY] =

mpj1001 & j1

14

a / —x“y+2x| dy
y=0 |2 0

2
= oc/o (2y+4)dy

) 2
= [y +4y}0 =12¢

2 r2 p
d
Jé jé xp(x,y) dx dy

2 2 2

a/o /0 (x*y+2x) dx dy
271 2

Oc/ [—x3y+x2} dy
o |3 0
278

oc/o [§y+4} dy

4 2
o [—yz + 4y]

3 0
4 10
4o =42 == =1.111
a[3+} .
2 2
jg Jé xyp(x,y) dx dy

2 2 29
Oc/o /0 (x“y* +2xy) dx dy
211 2
Oc/ [—x3y2+x2y] dy
0 |3 .

218
°.2
Ot/o [3)/ +4y} dy

8 4 2
o=y +2y2}

9 0

32 34
200 | —+4| = —= =1.259
*l5t } 27

ey

@)
&)

“)
&)
(6)
™)
®)

©)

(10)
(1)
(12)
(13)
(14)

(15)

(cont.
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202,
= x“plx,y)dxd
/0/0 plx,y) dx dy

2 2 3
Oc/o/o(xy—i—sz)dxdy

(iii) E[X] = E[Y] as the problem is symmetric in x and y.

(16)
(17)
(18)
(19)
(20)

21

If X and Y were independent random variables, we would be able to write E[XY] =
E[X]E[Y] = E[Y]?. As they are not independent there is no reason for this to be the case.

mpj1001 & jl
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6 Take the mgf for the binomial distribution and replace p with A /n:

o) =[1-p o =l +pe- )" = |1+ 2]

Now consider the limit of [1 + %] " as n — oo

fim [143]" = i (100 ) () gt -2 (7) -

. 1 5 1 3 1 1
",,llrﬁo [1+u+§1(1~1/n)u +§1(1—1/n)(1—2/n)u +.. } —1+u+§u +3

Thus, we see that
n
lim [1 + &(z - 1)} = M)
n—ro0 n

which is precisely the mgf for a Poisson distribution with parameter A.

(b) Assume that the probability that any given chocolate is deformed is p = 0.1,
therefore ¢ = 1 — p = 0.9. If X is the random variable representing the number of
deformed chocolates in a sample of 10, the probability of X > 2 is given by a binomial
distribution

PX>2)=1-[PX=0)+PX=1)+PX =2)

giving
100 ¢ 10, 10! 10!
= —[0.3487 +0. 0.1937] = 0.070
~lonnor? 4 +1‘9|p s +2.8,P q° [0.3487 +0.3874 + ]

We can also do this by approximating the distribution by a Poisson distribution with
parameter A = np = 10 x 0.1 = 1. Thus
ATe A

r!

tlem!  12¢71
I! + 2!

PX>2) =1 1%
= X>2)=1—- o

=1--10.3679+0.3679 4-0.184] = 0.080

We can therefore see that the results are in reasonable agreement.
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(c) Now repeat the calculations of (b) with n = 5 and p = 0.2 (therefore g = 0.8).

_ St o5, S 14, SY oo s3]

Inthisnewcase A =np=5x02=1
thus, P(X > 2) is the same as in the first case: 0.080.

In this case the agreement is no longer reasonable reasonable, and there is a much a
greater percentage error.

(d) Recall that the mean and variance for the binomial distribution are np and npg
respectively, and for the Poisson distribution are A = np and A = np. Thus, unless ¢ is
close to 1 (ie p is small), the variances of the distributions will differ. Thus, in order
for our Poisson approximation to be a decent one, we will need both a large » and a
small p. In general, p < 0.1 is taken to be a condition which means the approximation
is good. In practice, anything above about » = 8 means that the distribution is tending
towards normal. We see from the above results that indeed the case with a larger value
of p and a smaller value of n produced a worse estimate. Better answers might also refer
quantitatively to the results in (b) and (c).

END OF PAPER
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