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AIR t—

1 — 2 is reversible adiabatic compression, 2 — 3 is constant volume cooling.
From the data book for air, R, = 287 J/kg K and ¢,,= 718 J/kg K.

The compression is isentropic (adiabatic and reversible), so the final air temperature is,

Ta2 = Tal(:ial )
a2

Rlc, 287/718
= 300.0x(—0'0—1—) = 570.8 K

0.002

During the cooling process, the volume remains constant so 7,dS; = d U,. Assuming air
behaves as a perfect gas, dU, = m,c,, dT, and the entropy change of the air is,

3

T3
AS, = [ W - MaCyq f Iy My Cyy ln[T“3) = 0.02x718x1n(300'0) = -9.237J/)K
) T, A T T, 570.8

From the First Law, the heat transfer to the air during the cooling process (W = 0),

0, =U;z~Uy =m,c,,(Tys-T,) = 0.02x718%(300.0 - 570.8) = —3888.7]

Hence the heat transfer to the cylinderis Q. = -0, = 3888.7 J.
The entropy change of the cylinder is,
AS, = Q = 3888.7 = 12962 J/K
T 300

[

The total entropy change of the air plus cylinder system is,

AS = AS, +AS, = 12,962 - 9.237 = 3.725 J/K [9]

The entropy creation is caused solely by the irreversible heat transfer from the air to the

cylinder. [1]



(b) (1) Consider the heat pump at the instant when the house temperature is 7. Heat dQo
is pumped from the environment, work d# is supplied to the pump, heat dQ is transferred to

the house and its temperature increases by d7.

The actual PER is « times the ideal reversible PER. Hence,

T
pER = 2 _ 4T r
aw (T-T,) Q
aw
The heat capacity of the house is C and so dQ = CdT. Hence,
aw = EE1) g Cf1 T\ gp dQo
a T a T
Ty
Thus,
cly T C T,
wo=={ ~22\dr = =|(@ -T,) - Tyin| =L
T T a I,

(i) When Tp=275K and 73 =293 K,

W = < (293 - 275) - 275xIn 293)| _ 0-5646C
a 275 a

The thermal efficiency of the engine driving the pump is 0.30, so the required heat input is,

/4 0.5646C

Q=330 " 030a

If fuel were burned directly, the heat required would be C(7 - Tp) = (293 - 275)C = 18C

Hence, if the engine-pump combination is to be thermodynamically more efficient,
0.5646C - 0.5646 0.105

18C - a > =
0.30a 0.30x18

So the engine-pump combination is a thermodynamically attractive system.

[6
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(ii)) From the superheated steam tables at p; = 150 bar, 73 = 500 °C :
h3=3310.8 kJ/kg, s3=6.348 kl/kgK.

From the saturated steam tables at p4 = 0.04 bar :
hp=121.4Kkl/kg, hy=2553.7kI/kg, s;=0422kIkgK, s,=8.473kI/kgK.

At state 4S -
S48 =S5 S3=Sf 6348 -0.422
g = Sf Sg=Sf 8.473 -0.422

= 0.736

X48 =
S

il

hus = hy + xag(hg—hy) = 1214 + 0.736x(2553.7-121.4) = 1911.6 ki/kg

At turbine exit :
hy = hy — nr(hy~hyg) =3310.8 — 0.83x(3310.8 -1911.6)

2149.5 kJ/kg

_ha-hy 21495-1214
hg—hy  2553.7-1214

X4 = 0.834

The turbine specific work output is,

wp = (hy - hy) = (3310.8-2149.5) = 1161.3 kl/kg [5]

(iii) From the saturated steam tables at 0.04 bar : v, = 0.001004 m’/kg.
For an isentropic compression in the feed pump, Tds = dh — vdp = 0. Hence,

wpp = (y —h) = ve(py—-p1)
= 0.001004x(150.0x10° -0.04x10°) = 15.1x10% J/kg = 15.1kl/kg [2]



(iv) The specific enthalpy after the feed pumpis: A, = 121.4 +15.1 = 136.5 klJ/kg
The heat supplied in the boiler per kg of steam generated is,

gp = (3 - hy) = (3310.8 -136.5) = 31743 kl/kg

The cycle efficiency is,
_Wr - Wep _ 11613 -15.1 _ 0.361
qB 3174.3

Neycle

(b) (i) Dryness fraction x4 = 0.834 is too low. The excessive wetness in the final stages
of the turbine will result in (i) reduced LP turbine efficiency and (ii) erosion of the blades.

(ii) The remedy is to expand the steam in a HP turbine to around 40 bar and then reheat in
the boiler to 500 °C before expanding in a LP turbine to 0.04 bar. This will move state 4 to
the right on the (7-s) diagram thus increasing the dryness fraction (ideally to around 0.92).

(iii) Introducing reheat will improve the cycle efficiency because (i) extra heat is added at
high temperature (which is thermodynamically beneficial) and (ii) the LP turbine efficiency
will improve because the steam will be drier.

(iv) The cooling water temperature at inlet to the condenser tubes is fixed by the water
supply temperature (river or cooling tower exit), say 15 °C. To obtain the required heat
transfer rate in the condenser, the steam temperature must be a few degrees higher, say 29 °C.
Because wet steam is an equilibrium mixture of liquid and vapour, the steam-side pressure
must be the saturated vapour pressure corresponding to this temperature, ps(29 °C) = 0.04
bar. This is the back pressure on the turbine. No moving parts are required to maintain the
vacuum (although a pump is always fitted to extract the air which inevitably leaks in).

[2]

(2]
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3 (a) * 3
T
pressure p
.+ p=0.90 bar
4 "y » p=075bar
= . p=025bar
5
- [5]
s
(b) For the jet engine compressor,
(r=n/y 0.4/1.4
T,s = T £2 = 2200x( 220 = 3172K
P 0.25

T, =T + Tos ~ 1) _ 5p00 . (B17:2-2200)
Neomp 0.88

= 3304K [2]

(c) To find the operating pressure p; we note that the work output of the turbine equals the
work input to the compressor. These work terms are given by,
(r-Dly
P3 _1
( P2 ]

(r-n/y
Pq 1
Noting that p4 = p; we have (with ps in bar) :

04/1.4 04/1.4
3304 x |[ 23 —1| = 2032x |23 -1
0.90 0.75

[ 330.4 293.2

T:
we = (I3=hy) = c, (T3 - T) = cpTz(i——l) )

T,
wr = (h4—h5) = Cp (T4 - T5) = cpTS (F:— - 1] = CpT5

(04/14) _ _
09(0.4/1.4) - 075(0.4/1,4)lp3 = 3304 -293.2

2218 p{*4/19 < 372 - ps =6.15bar [8]



(d) From the SFEE, the heat transferred per kg of cabin air supplied is,
g = (s —hy) = c,(T,-T,)
From we = wr we have (T3 - T4) = (T> - T5). Hence,
q = 1.005x(330.4 - 293.2) = 37.4 kl/kg of cabin air [2]

(e) For a relative humidity of 60 % in the cabin at 20 °C, the partial pressure of the water
vapour must be,

Py = 0.60xpg(Ts) = 0.60x0.02339 = 0.0140 bar

The partial pressure of the air is therefore,

Pa = ps—p, = 075 - 0.0140 = 0.7360 bar

Writing the ideal gas equation for the water vapour and the air, we have,

va = vavTS

p aV maRaT 5

Hence, if M, and M, are the molar masses of water vapour and air,

m,  pR, _ pM, _ 0.0140x18

= 0.0118kg H,0 per kg air. 3
m,  p.R,  p.M,  0.7360x29 §HZUper e B3]



Section B

4 (a)

f:¢1(‘/,d7:u"p)=0 (1)

where ¢, is just some unknown function of the variables. There are five variables which can
be expressed in terms of three fundamental quantities (M, L, T) and so from Buckingham’s
theorem 5-3=2 - there are two non-dimensional groups. There are a few equivalent possibilities
but the most obvious are Strouhal number and Reynolds number. Since there are only two
groups that describe the problem then one must be simply a function of the other.

fd pvVd
el Lt 2
% ) u (2)
where ¢9 is some unknown function. So if we fix the Reynolds number then the Strouhal num-
ber is also fixed.

(b) For full dynamic similarity then we must ensure that the Reynolds number in the
wind-tunnel (WT) is the same as that in the ocean and so

Pocean ‘/ocean docean _ PWT VWT dWT
= @)
Hocean HwT
ocean d
VWT _ Poce HWT Gocean %cean — 6(]m/s (4)

PWT Hocean dWT

(c) Since we have now made the Reynolds number the same by the above choice then the
Strouhal number is the same

f WTdWT _ f oceandocean
VWT - V;cean (5)
focean =2Hz (6)
(d) The peak force is
F, = ¢3(V,d, p, ) (7
and so we have again 5 variables and 3 fundamental quantities and hence two non-dimensional
numbers.
F, pVd
v~ % (T) &)



and since we have matched the Reynolds number then this new non-dimensional force must
also be matched between the ocean and the wind-tunnel. This gives

F ocean ocean V2 docean
4 — Pocean Yocean = 0.926 (9)
F, wr pwtVigrdwr

(e) The most obvious problem is due to Mach number effects. In order to avoid the effects
of compressibility then the Mach number should be < 0.3 which in the wind-tunnel would be
about 100 m/s. This corresponds to a velocity in the ocean of only about 1.67 m/s which
would be the highest velocity for which we could achieve full dynamic similarity. For the exam
question it is not necessary to calculate the numbers but just to realise that Mach number
effects limit the maximum speed for which full dynamic similarity can be achieved. Another
problem noted by some students is the problem with approaching the natural frequency of the
cylinder - note this is another non-dimensional parameter related to the material properties
and dimensions of the cylinder which may be simply written as f/f, where f, is the natural
frequency of transverse vibrations of the cylinder. Note in both these situations what happens
is that full dynamic similarity fails when an additional parameter becomes important. When
choosing the original parameters we implicitly assumed some terms in the equations of motion
were small (eg. ones associated with compressibility). The truth is that we never have ”com-
plete” dynamic similarity since there are always extra very small effects that we ignore (eg. the
effect of the earth’s rotation in wind-tunnel experiments leads to Coriolis forces that are very
tiny).

(f) If the cylinder is near the surface then flow over it will generate waves. The appropriate
number here is the Froude number (Fr) which measures the ratio of inertia forces to gravity
~ forces. This may be written in different forms but for this case it would be Fr = V/1/gd where
d is the cylinder diameter. The other potential effect is that of surface tension which involves
the Weber number, this is often small but it depends on the precise situation.



5  (a) Consider the forces on a thin ring of fluid between the two cylinders located at a
radius r and with length dz and radial extent dr. The forces acting are shear forces on the inner
and outer faces of the element and pressure forces on the up- and down-stream ends. The area
of the ends (normal to the x—direction) are the same and equal to 27rdr - the circumference
of the ring times its thickness in the radial direction. The area of the inside face of the ring is
2nrdz and the area of the outside face is slightly bigger at 27 (r + dr)dz. Balancing the forces
in the z—direction:

p X 2mrdr — (p+ gi—)dx)%rrdr —7 X 2rrde + (17 + -Z—;d?")Z’n’('f‘ +dr)dz =0 (1)
which becomes

ﬁ27r7"dr0lac — ﬁ

2
o = 2n(dr)*dx (2)

—(Z—Z)Zwrdrdx = —2nrdrdz —

and we drop the last term since it is third order in the small quantities whereas the others
are only second order (so as we take dr — 0 and dz — 0 then the last term quickly becomes
negligible compared with the other terms). If we divide through by drdz then we are left with

dp dr  d(rr)

T =T + =g (3)
and dividing through by r we get the required results
1d(rr) dp
i = £ 4
r dr dx )

(b) Now in order to find the shear stress (from which we can then find the velocity since
we know the fluid is Newtonian) we integrate this equation with respect to r and find
rdp C
=2, ¥ 5
T 2dx + T (5)
where C is a constant of integration. We do not have any known boundary conditions on the
shear stress, only on the velocity and hence we need to integrate this again using the fact that
the fluid is Newtonian i.e.

T = p—— = 0Or— (6)
Note that the fact that the viscosity varies with the radius does not change the fact that it is
Newtonian - the shear stress is still independent of the shear rate (i.e. the velocity gradient).

We substitute this back into our equation for the stress (5) and it turns out not to be too hard
to integrate and we find

u=———r——T+D (7)

10



where D is a constant of integration. We now have two unknown constants and we also have
two boundary conditions which are that the velocity is zero at r = R; and r = Ry, the inner
and outer radii.

1dp C

0= 35 de —R; — ﬂR1+D (8)
1 dp C
0= 5507~ g+ D (9)

These are just simultaneous equations which can be solved in a variety of ways. One simple
approach is to subtract (8) from (9) to eliminate D and then solve for C. This can then be
substituted back to find D.

The details are not very important and the solutions for the constants are

_ldp
C= —§%R1R2 (10)
and
_ 1ladp

Substituting these back into (7) and collecting terms gives

1 d RiR
= o5 (r+ 2 = (Ra+ Ry)) (12)

We can finally check this by making sure it satisfies the boundary conditions - which it does
(u=0atr=R;and u=0at r= Ry.

(c) This part is fairly straightforward. The drag force per unit length of either cylinder is
just the shear stress acting on the surface multiplied by the area per unit length. The area of
the outer pipe per unit length is —27 Ry and for the inner is just 2w R;. The minus sign in the
first one comes from the fact that the normal to the surface is in the opposite direction. This
can be looked at in other ways. The velocity gradient on the top surface is actually negative
in the direction normal to the wall and hence the shear stress is in the positive direction. The
value of the shear stress on each surface may be found from (5) after inserting the value for C
which we found in the last part so (5) becomes

_rdp ldp
T 2dx 2r dwR1R2 (13)
and collecting terms,
dp T R1R2
=2 (_ _ 14
dz ( 2r ) (14)

11



This leads to

F, _-R(Ry—Ri) Ry
F1 R1 (Rl - Rz) Rl

(15)

Note that this particular form arises due to the chosen variation of the viscosity which is
convenient mathematically although unlikely in a real flow where it might vary approximately
linearly between one value on the inner face and another on the outer face but would not
necessarily be zero at r = 0. This would make the algebra more complicated but the method
would be exactly the same.

12



6 (a) Simply apply continuity (or conservation of mass which is equivalent in this incom-
pressible flow)between station 1 and station 2

U h + U 3h = Us3h (1)

Uy = 4U, (2)
(b) Apply continuity again between station 1 and station 3

Us =30, (4)
(c) Apply the momentum equation for a control volume between station 1 and station 2
Y F, = Momentum out — Momentum in (5)
The forces are due to the pressures acting on the faces of the control volume.

P13h + Pih — Pydh = pU23h — (pUZ3h + p(9U1)h) (6)

4Pih — 4Pyh = pl6U23h — pUZ3h — p81UZh

= —36pU?

P; = P, + 9pU}

(d) Now apply the momentum equation between station 2 and station 3. Note that we now
have an extra force since the plate exerts a force on the fluid in the control volume.

Py4h — P3dh + F = pU34h — pU23h (7

F = —pl12UZh + P34h — Pydh =
p3U24h — P3ah + (P, + 9pU?)4h

F = —4h(P, — P3 + 12pU3)

We can check that it makes sense by considering what happens as we change the size of the
different terms. For example if we increase P; keeping everything else constant then the force
the plate exerts on the fluid increases in order to balance the increases force on the LHS of the
control volume. Similar reasoning applies to changing P;. If we increase U; then the force also
increases to balance the larger change in momentum through the control volume. Note that
the sign depends on how you define F' (as. positive in the positive x direction or alternatively
as pointing upstream). The examiner was generous to the candidates with regard to the sign.

13



(e) The friction on the duct walls acts on the fluid in the direction opposite to the fluid
motion and hence the pressure at station 3 would be reduced. If you think in terms of forces
then the result is fairly obvious. On the actual exam there were a large number of suggestions,
mostly from fuzzy thinking and trying to relate pressure and velocity through Bernoulli. Also
suggestions that friction makes the flow slow down since that is what friction does in every day
life (to bicycles, for example) . In fact it does slow the flow down near the wall to zero but can
cause it to speed up near the centre so as to maintain the same flow rate. This is another way
to look at the effect of boundary layers- they lead to an acceleration of the central flow which
leads to a drop in the pressure - although there are some subtleties involved.

14



