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SECTION A

Answer not more than two questions from this section.

1 (a) Explain briefly what is meant by the terms gain margin and phase margin. [3]

This part is bookwork. GM is amount in dB by which the gain falls short of unity when
the phase is 180°. PM is amount by which phase falls short of 180° when gain is unity.
The GM and PM of a system provide measures of the margin of stability of the closed
loop system.

(b) A system has a transfer function

2
)= T D672

and a controller connected as shown in Fig. 1. Assuming that K(s) = 1, use the Nyquist
diagram for G(s) shown in Fig. 2 to estimate:
(i) the gain and phase margins;

(ii) the frequency in radians/sec at which |1+ K(s)G(s)| is minimum and
the magnitude of the closed-loop frequency response at that frequency. [5]

The gain and phase margins can be measured directly from Fig. 2.
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(c) A phase compensator is now used to replace K(s) such that

1+2s
K —_—
(s) 1+s/4
Sketch the Nyquist diagram for K(s)G(s) on the copy of Fig. 2 provided. [6]

Simplest approach is to compute the magnitude g and phase 0 of K(s) at a few spot
frequencies and then map the given points on G(s) by multiplying by g and adding the
additional phase 6. Eg.

o g 0 |G(s)|xg argG(s)+6

3.0 49 437 0.28 8
20 37 494 0.57 30
1.5 3.0 510 0.86 32

Resulting Nyquist plot for K(s)G(s) is shown in Fig. 2 below.

(d) Using your sketch, re-estimate the quantities found in part (b) for the
compensated system. Based on these estimates, what can be inferred about the effect
of the compensator on the closed-loop step response? [6]

As in part (a), the gain and phase margins can be measured directly from the new plot of
K(s)G(s) in Fig. 2.
10

GM = 3= 12.7dB (exact ans = 12.6)

PM =54° (exact ans =53.7°)

Min |1+ K(s)G(s)| occurs at =~ 2.1 rad/sec.
K(s)G(s)

1 +K(s)G(s)

These results show that the addition of the phase compensator has improved the gain and

phase margins. Also, the (approximately) peak closed-loop gain has decreased and the

frequency of the peak has increased. All this points to a more stable system with a faster
response. Thus, the step response should exhibit a faster rise time and reduced overshoot.
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2 Figure 4 shows a feedback control system in which

20

Gs) = s(s% + 65 420)

and Fig. 5 shows the magnitude of the frequency response of G(s). The control system is
to be designed such that the steady-state response to disturbances is zero and the frequency
range over which the gain of the closed-loop system exceeds 0.5 should extend to at least
7 radians/sec. You may assume that the closed loop system is always stable.

(a) Derive an expression for y(s) as a function of the reference input 7(s) and

the disturbance d(s).

This is bookwork.

¥(s) = K(s)G(s)(7(s) = ¥(s)) + G(s)d(s)
K(s)G(s) G(s)

= ————=—Fs)+ m

1+K(5)G(s) d(s)

(b) For K(s) =2, find the steady state response of y(¢) when:

@@ r(t)=cos(7t) and d(t) =0;
(ii) r(t)=0 and d(¢t) =H(z);
(iii) r(¢) =cos(7t) and d(t) = H(¢),

where H(t) is the unit step function.

System is linear so the responses to r(t) and d(t) can be calculated separately and

summed.
ForK(s)=k=2,
(i)  Response to r(t) = cos(7t) will be Acos(7t + ¢) where
kG(s) k 40
A = - p— = |— "
1+kG(s) | |1/G(s) +k 2544203

40

-1

=t —— ) =24
¢ =tan (254+203j) !

[4]

(5]
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(ii) response to d(t) = H(t) is

(iii) System is linear so the responses to r(t) = cos(7t) and d(t) = H(t)can
be summed.

(c) The proportional controller is now extended by adding integral and derivative
terms such that K(s) =2+ 1/s+3s. By expressing K(s) as the product of a quadratic
and the term 1/s , draw the magnitude response of K(s)G(s) on the additional copy of
Fig. S. (6]

The bode plot for K(s)G(s) can be found by first noting that
1
K(s)=2+1/s+3s= ;(3s2+2s+ 1)

then separately plotting 1/s and 3s% 4+ 2s+ 1 on the supplied graph, finally adding them
to G(s). The first of these terms is a straight line of gradient 20dB/decade intercepting the
OdB axis at 1 rad/s. The second is a standard second order term with a turning point at
1/+/3 =0.58 and then rising at 40 dB/decade. The damping factor is ~ 0.6 so there is no
significant resonance peak. See Fig. 3.

(d) Verify that the control system now meets the design requirements. [S]

Response to d(t) = H(t) is now

0m= [ (550960 [T 77,00

so zero steady-state error to a disturbance.

For the frequency response, at 7 rad/sec K(s)G(s) =~ 1 from the Bode plot.
Magnitude of frequency response

_ ’ K(s)G(s)
1+ K(s)G(s)

Q2cont.



Magnitude (dB)

Frequency (rad/sec)

Fig.3

In the “worst case” of 0 phase, A = 0.5, for any other phase A will be larger. Hence the
gain is > 0.5 at 7 rads/sec meaning that the frequency response requirement is met.
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3 (a) For any system with a proper rational transfer function, state the conditions in
terms of pole positions for the system to be unstable. [4]

There are two conditions:

(i)  if any pole has a +ve real part, system will be unstable;

(ii)  if any repeated pole lies on the imaginary axis, system will be unstable.

(b) The feedback control system shown in Fig. 7 has

1

o6

If K(s) =k, show that the poles of the closed-loop system are given by

s=—1%+v4—k.
Hence, determine the range of k for which the feedback system is stable. [6]
K(s)G(s)

In closed loop system, the transfer function is ey <OIEOR Poles are therefore given by
the solution to 1+ K(s)G(s) = 0. Hence,

(s+1)(s+3)=—k; therefore s*>+2s+(k—3)=0

From which the result s = —1 & /4 — k follows.

This result shows that when k is very small, the closed loop poles are real and one
of them lies in the +ve half-plane. Most positive rootis s = v4—k— 1.
When k < 3, s > 0 hence system is unstable.
When 3 < k < 4, s <0, hence system is stable.
When 4 < k, poles become complex with real part -ve, hence system is stable.

Overall, system is stable for 3 < k < oo.

(¢) When k=20, compute the damping factor of the closed-loop system and
hence sketch the system step response. Your sketch should show the peak overshoot and
the approximate time at which the peak occurs. [5]

Q3cont.
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When k = 20, closed loop poles are at s = —1 +4j. Therefore

a),% = 12—1—42, hence wy=vV17

! = L = (0.243

C=—
wp /17

Step response can now be “copied” from Mechanics Data Book - see Fig. 6

Step Response

Pk=1.7
45% overshoot
t=0.82secs

3
Time (sec)

Fig. 6

(d) Show that adding a derivative term to the controller so that K(s) = k+kys
can increase damping. Using the same value k = 20, find the value of k; required to
give a damping factor of 0.5. ' [5]

With derivative control added

k+kgs

14+K(s)G = |4+—-
TR(GE) T 7 125-3)

Q3cont.
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therefore, the characteristic equation becomes
s2 4+ (2+ky)s+17=0
Hence, the derivative gain term adds directly to the damping.
2cwn =2+ky

To achieve a damping factor of ¢ = 0.5, ky; =2cwy —2 =V/17—-2 =2.12.

K(s) —> G(s)

Fig. 7
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SECTION B

Answer not more than two questions from this section.

4  The signal x(¢t) shown in Fig. 9 is a periodic zero-mean triangular waveform with
repetition frequency 1 kHz and peak amplitude 1 volt.

(a) The signal x(#) is low-pass filtered with cut-off frequency 10 kHz and
sampled at 20 kHz.  Sketch the resulting spectrum.

The spectrum of a periodic signal is a line spectrum where each line corresponds to a
single frequency component. The amplitudes and phases of each spectral line are given
by the Fourier Series coefficients, which for the triangle shown are in the databook. The
filtering will limit the spectrum to 5 components at frequencies 1, 3, 5, 7 and 9 kHz plus
the corresponding -ve components at -1, -3, -5, -7, -9 kHz. The effect of the sampling
is then to repeat this spectrum centred at multiples of the sampling frequency. Fig. 8
illustrates.

|| [T

-60 -40 -20

freq /kHz

Spectrum before sampling

Fig. 8

(b) Show that the rms noise voltage introduced by an ideal uniform quantiser with
a step size 8V is givenby 6V /v12.

This is standard bookwork. The key assumption is that the difference v between the
sampled value and the true value will be distributed uniformly across the range —6V /2

Q4cont.

[3]

(3]
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to 8V /2. Hence, the mean square noise is just the expected value of V2, i.e.
év/2
2 2
Vs = v)vdv
rms /_ Sv /2p v)
where p(v), the probability of v, is 1/6v. The result vy,s = 8v/+/12 follows immediately

from this.

(c) If the quantiser is 8-bit and the range is & 5 volts, calculate the signal-to-noise
power ratio (SNR) of the quantised signal in decibels. How could this SNR be improved
without increasing the number of quantisation levels? [5]

For the gjven sampler,

ov=10/256 = 0.0391. Hence, vpus=0.0113

We also require the rms voltage Vi of the signal.
4 [T/4 (41\?
Hence, Vi = 0.5774.

The required signal to noise ratio is then 2010g(Vims /Vrms) = 34.19dB.

This SNR could be improved simply by scaling the input signal by a factor of 5
so that all of the available quanisation range is used. This would increase the SNR by
20log5 = 14dB.

(d) Calculate the bit rate of the signal sampled in part (a) and quantised in part
(c). Determine the minimum bandwidth that a communications channel should have to
reliably support this bit rate at an SNR of 5dB. [5]

Bit rate = fgN where f; is the sample rate and N is the number of bits per sample. Hence,
for the given case, bit rate = 20,000 * 8 = 160kbits/sec.

According to Shannon’s formula,

— 160000 _. 160000 __
Hence, B = log, 1+3.1623) = 50574 — 77.8 kHz.

Q4cont.



14

—P 1

1 ms

Xx(t)
*

Fig. 9
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5 (a) With regard to amplitude modulation schemes, explain what is meant by
single side-band (SSB) and double side-band (DSB) operation and briefly discuss their
relative merits. (4]

Bookwork. Amplitude modulation involves shifting the baseband spectrum (centred
on zero frequency) so that it is centred on a frequency which can be transmitted.
Since the baseband spectrum has both +ve and -ve frequencies, when it is shifted both
components become real resulting in double side-bands (DSB). If one of these side bands
is suppressed, the result is a single-side band (SSB) modulation scheme. See Fig. 10.

i side-bands
Freq / J
shift
-ve +ve fre
| 4
Baseband Carrier
Frequency
Fig. 10

(b) By considering the case of x(t) = cos(wt), show that simple multiplication
of x(¢) by a carrier wave cos(w.t) where @ >> ® leads to double side-bands. (4}

Let x(t) = cos @t and let x(t) == X (w) be a transform pair, then
xm(t) = coswrcoswt
= % cos Wt [eja’ct + e"jwct}
Hence,
1 1
xm(r) = X (@ ~ ) + 5 X (0 + @)

Since X(®) has components at o, the shifted version X(@ + @;) will have the same
components at @, + @. Hence, the modulated signal has double side-bands.

Q5cont.
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(¢) By considering the transmission of speech with a bandwidth of 300 Hz
to 3 kHz, explain why it is not practical to obtain SSB modulation by directly
filtering x(¢)cos(wct) to suppress one of the side-bands.

Let w, be the lowest required frequency in the baseband signal (eg for speech this would
be about 30 Hz for reasonable quality or 300 Hz for telephone speech). In the modulated
signal, this would leave a gap of 2@, between the two bands. In order to suppress one
of the side-bands, a bandpass filter would be needed with a very sharp cut-off to achieve
.useful suppression. In fact, too sharp to be practical.

For example, suppose that the unwanted side-band must be at least 30dB lower than
the retained side-band. Even for low quality telephone speech, this would require 30dB
to be achieved over a frequency range of just 600Hz. Suppose that the carrier is at IMHz,
then the cut-off rate would need to be about 10° dB’s per decade!

(d) Fig. 11 shows a block diagram of an alternative amplitude modulation
scheme. The modulation signals are m;(z) = 2cos(Bt) and my(t) = cos((@w. — B)t),
where B is the cut-off frequency of the lowpass filter, and @, is the carrier frequency.
If x(t) =cos(wt) and @ < B <K @, derive an expression for the output y(¢) and hence
demonstrate that this is an SSB scheme.

As shown in Fig. 11, let the upper signal path be denoted by subscript u and the lower by
subscriptl. Then

qu(t) = 2cosBtcos ot
= cos(B— )t +cos(B+ )t
q;(t) = 2sinBtcos wt

= sin(B— w)t+sin(B+ o)t

After filtering these become

ru(t) = cos(B— o)t
ri(t) = sin(B— o)t
Modulating again gives
su(t) = cos(@c—B)tcos(B—m)t

' Q5cont.

[4]

[8]
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s;(t) = sin(w;—B)tsin(B— w)t
)

Hence,

y(t) = sut)—s()
= cos(®; — B)tcos(B — )t —sin(w, — B)tsin(B — o)t
= cos(w.—B+B— )t
= cos(®w; — o)t

Hence, y(t) consists of just the lower side-band of the modulated signal.

qu(t) - ] I‘u(t) Su(t)
5
m;(t) m,(t) .
x(t) y(©
-90 ° 90 °
qi(t) B | 1) s1(t)

Fig. 11
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(@ (i) Show that if x(¢) = X(w) where X(w) is the Fourier Transform
of x(t), then .
x(t —t,) = e 1Y X(w) .

[3]

Letx(t —1t,) = X'(w) then using the substitution T =1 —t,

+oo :
X'(0) = / x(t — to)e ™9 dy

—00

{00 . .
= / x(1)e IO I W0 gy

o0

= o [* gyt

{e o]

= ¢ /%% X (@)

(i) Show that the Fourier Transform of sin(w,t) is
T
.j— [6(@ — ) — 8(@ + @o)]

and find the Fourier Transform of sin(wyt + @) . [5]

To show that sin(w,t) = % [6(® — 0,) — 8(® + )], substitute the RHS into

the formula for x(t)
+oo .
M) = — / T 15(0— wp) — 8(0 + @p)] /¥ dd
27 J—oo J
- L o700t — ¢=i1] = sin(w1)
2j

sin(wot + ¢) = sin(w,(t + E%)) hence using (i) above the transform is

?[6«0 — ) — 8(0 + w,)] /4 ©/ @

Q6cont.
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(i) The signal x(¢) = sin(2wf,t) is sampled at times ¢ =0 ms, t =
0.25 ms, t=10.5 ms and ¢ = 0.75 ms to produce the sequence x, =
{0,1,0,—1}. What is the sampling frequency f; and what are the possible
values of f, for f, >07?

The sampling frequency fs = 1/Ts where Ty = 0.25msecs is the sampling
period. Hence, f; = 4 kHz. The lowest possible frequency f, is clearly 1
kHz. But note that sine waves at frequency 5 kHz, 9 kHz, 13kHz, ... also
meet the constraints.

(i) Assuming that f, < % fs, calculate the discrete Fourier Transform
(DFT) of x;,. To what frequencies do the individual terms in the DFT
correspond?

This is a simple application of the formula X = ngne_k"%j giving Xj, =
{O, _2.], Ov +2j}’

(iii) Explain why there is more than one non-zero term in the DFT even
though x(z) is a pure sinusoid.

Sampling causes the baseband spectrum to be replicated at multiples of the
sampling frequency. The DFT spectrum contains the upper (i.e. positive
frequency) half of the baseband spectrum plus the lower half of the first
repetition. Thus, the 1 kHz component also appears at fs — 1, ie 3 kHz.

END OF PAPER
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