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SECTION A

Answer not more than two questions from this section.

1 (a) Define the term frequency response for an asymptotically stable system
having transfer function G(s), and explain how it can be used to calculate the steady
state response of such a system to inputs of the form x(t) = sin(ωt), where ω rad.s−1 is
a fixed frequency. [6]

Solution: Frequency response gives the amplitude and magnitude response of a
linear stable system at a particular frequency, say ω , once all transients have died away.
Can be obtained as:

H(s)|s= jω

Response to x(t) is

y(t) = |H( jω)|sin(ωt + arg(H( jω)))

(b) A linear system has the following transfer function:

G(s) =
100s

(s+1)(s+10)

Determine:

(i) The response of the system to an input signal x(t) = 0.1H(t), after any
initial transients have died away.

solution: System is stable as poles lie to left of imaginary axis (at -1
and -10). Hence steady state response is 0.1G(0) = 0.

(ii) The response of the system to an input signal x(t) = 0.3cos(0.3t), again
after any initial transients have died away.

solution: Frequency response is:

G( j0.3) =
100 j0.3

( j0.3+1)( j0.3+10)
= 2.87exp( j1.25)

Hence response is:

y(t) = 2.87×0.3cos(0.3t +1.25) = 0.86cos(0.3t +1.25)

[6]
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(c) Sketch, on the semi-log paper provided, the Bode diagram for G(s).
Determine from this the approximate range of frequencies where the input signal is passed
unattenuated (assume that a 3dB tolerance is allowable before the signal is considered
attenuated). [8]

Solution:

Bode diagram is obtained as:

Corner frequencies at ω = 1 and ω = 10 rad s−1. Gain of s term on numerator
is 0dB at ω = 1. Hence first asymptote has gain of 100× 1/((1)(10)) = 10, i.e. 20dB
at ω = 1. Finally, find frequencies where gain= 1. Since slope either side of range
1 < ω < 10 is approx. ±20dB/decade, we need to move 1 decade below and above this
range to find range of unattenuated frequencies, i.e.

0.1 < ω < 100

is the unattentuated range.

2 (a) A linear system has impulse response g(t). Under what condition is the
system asymptotically stable? [6]

Solution:

We require
∫ ∞
t=0 |g(t)|dt < ∞

(b) A linear system has following impulse response:

g(t) = exp(−t)
∞
∑

k=0
δ (t− kτ)

where τ is a positive constant. Determine whether the system is asymptotically stable. [6]

Solution:

Observe that g(t) = 0 always, so |g(t)| = g(t). Hence, using summation of
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geometric series:
∫ ∞

t=0
|g(t)|dt =

∫ ∞

t=0
exp(−t)

∞
∑

k=0
δ (t− kτ)dt

=
∞
∑

k=0
exp(−kτ)

=
1

1− exp(−τ))

< ∞
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Therefore it is asymptotically stable.

(c) Show that the transfer function of the system is

G(s) =
1

1− exp(−(s+1)τ)

Consider a sine-wave input signal x(t) = sin(ωt), where ω rad s−1 is a fixed frequency.
Determine the smallest non-zero frequency ω for which the steady state output signal is
in phase with the input signal, when x(t) is input to the system G(s). What is the gain of
the system at that frequency? [8]

Solution: Transfer function is Laplace transform of impulse response:

G(s) =
∫ ∞

0
exp(−t)

∞
∑

k=0
δ (t− kτ)exp(−st)dt

=
∞
∑

k=0
exp(−kτ)exp(−skτ)

=
1

1− exp(−τ(s+1))

Steady state output given by the frequency response, G( jω). The output is in phase
when argG( jω) = 2nπ . This is obtained when

arg(1+ exp(−τ( jω +1)) = 2nπ

i.e.
ℑexp(−τ( jω +1)) = 0

[since ℜ1− exp(−τ( jω +1)) is never negative]

This occurs whenever
sin(τω) = 0

i.e.
τω = nπ

Hence smallest non-zero frequency is

ω = π/τ

The gain at this frequency, i.e. ω = π/τ is:

|G( jω)|=
∣∣∣∣

1
1− exp(−τ)cos(π)

∣∣∣∣ =
1

1+ exp(−τ)
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3 A linear system has transfer function

G(s) =
10

s(s2 +2
√

2s+4)

The system is to be controlled by negative feedback with gain kp, as shown in Figure
2.

−

k
p G(s)

d y

Fig. 2

(a) Determine the closed-loop transfer function of the system. [6]

solution:
kpG(s)

1+ kpG(s)
=

10kp

s(s2 +2
√

2s+4)+10

Version: 4 (cont.
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(b) A part of the Nyquist diagram for the system is shown in Fig. 3. Determine
the gain and phase margins for the system, with kp = 1. How would you expect the system
to respond to changes in the desired signal d? [10]

Solution:

Gain margin is measured as a≈ 1/0.88 = 1.14, see annotated figure. Phase margin
is ψ ≈ 5degrees, again see annotated figure.

These margins are very small, so we expect an oscillatory response to the changes
in desired r.

(c) When kp = 0.5, determine the range of frequencies for which
∣∣∣∣

1
1+ kpG( jω)

∣∣∣∣≥ 1

Explain the implications of this for system behaviour. [6]

Solution:

When kp = 0.5 the Nyquist diagram has the same phase but half the magnitude. In
order to find the frequency where

∣∣∣∣
1

1+ kpG( jω)

∣∣∣∣ = 1

we note that 1 + kpG( jω) is the complex vector joining kpG( jω) to the point (−1,0).
On our graph, which corresponded to kp = 1, this will therefore correspond to the vector
joining G( jω) and (−2,0). We look for the frequency where this vector has magnitude
equal to 2, i.e. the frequency 0.94 rad s−1, see annotated diagram.
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SECTION B

Answer not more than two questions from this section.

4 (a) A signal f (t) is as shown in Figure 4.

1.0

τ τ + T t

Fig. 4

Show by direct integration that its Fourier Transform is

F(ω) = Te− jω(τ+T/2)sinc(ωT/2)

[5]

Solution:

F(ω) =
∫ τ+T

τ
1.exp(− jωt)dt

=− 1
jω

(exp(− jω(τ +T )− exp(− jω(τ))

=− 1
jω

exp(− jω(τ +T/2))(exp(− jω(T/2))− exp(− jω(−T/2))

=− 1
jω

exp(− jω(τ +T/2))(−2 j sin(ω(T/2)))

= T exp(− jω(τ +T/2))sinc(ωT/2)

as required.
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(b) It is proposed to sample f (t) at regular times t = ...0, T/M, 2T/M, ... , etc.,
where M is an integer constant. Now, take τ = 0. Show that the Discrete Time Fourier
Transform (DTFT) Fs(ω) of the sampled waveform is:

Fs(ω) = exp(− jωT/2)
sin((M +1)ωT/(2M))

sin(ωT/(2M)) [8]

Solution:

Sampled values of f (t) are equal to 1 for times t = 0,T/M,2T/M...T . Hence DTFT
is:

Fs(ω) =
M

∑
n=0

1.exp( jωnT/M)

=
1− exp(− jωT/M)M+1

1− exp(− jωT/M)

=
exp(− jωT (M +1)/(2M))

exp(− jωT/(2M))
2 j sin(ωT (M +1)/(2M))

2 j sin(ωT/(2M))

= exp(− jωT/2)
sin(ωT (M +1)/(2M))

sin(ωT/(2M))

as required, using the summation formula for a finite term geometric series, see maths
databook.

(c) Hence, using sampling theory or otherwise, explain why the following
identity holds:

+∞
∑

k=−∞
(−1)kMsinc(ωT/2+πkM) =

sin((M +1)ωT/(2M))
M sin(ωT/(2M)) [7]

Solution: Sampling theory states that the spectrum of a signal sampled at times
nT/M will be:

Fs(ω) =
M
T

+∞
∑

m=−∞
F(ω−mω0)

where ω0 = 2πM/T rad.s−1 is the sampling frequency. Hence, since we know
Fs(ω) directly from part (b), and we know F(ω) from part (a), we can equate the two
representations (with τ = 0):

Fs(ω) =
M
T

+∞
∑

m=−∞
Te− j(ω+2mπM/T )(T/2)sinc((ω +2mπM/T )T/2)

Version: 4 (cont.
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= exp(− jωT/2)
sin(ωT (M +1)/(2M))

sin(ωT/(2M))

But e− j(ω+2mπM/T )(T/2) = e− j(ωT/2)(−1)mM, so

+∞
∑

m=−∞
(−1)mMsinc((ω +2mπM/T )T/2) =

1
M

sin(ωT (M +1)/(2M))
sin(ωT/(2M))

as required.

Examiner’s Comment: this last part was only solved by a handful of candidates in
the examination.
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5 (a) Explain the meaning of channel capacity. [2]

(b) The binary erasure channel is a channel for which the transmitted bits are
either received correctly with probability 1− ε or erased with probability ε , i.e. there
are no bit-flips . The capacity of this channel is

C = 1− ε bits/channel use

where ε is the erasure probability. Sketch the capacity of the channel as a function of
ε and shade the region of rates that are not achievable. [2]

(c) Assume now that the erasure probability ε depends on the signal-to-noise
ratio (SNR) of a given modulation. What sort of relationship would you expect between
ε and SNR? Justify your answer. [3]

(d) If ε = 1/SNR, sketch the capacity of the channel as a function of SNR,
shading again the region of rates that are not achievable. [3]

(e) A speech signal of bandwidth B = 3 kHz is to be transmitted over the above
channel, but needs to be digitised first.

(i) How many samples per second do we need from this signal so that we
can reconstruct it perfectly? [2]

(ii) Show that the quantisation noise variance of a uniform quantiser is
∆2/12 , where ∆ is the quantisation step. [4]

(iii) Assume that we use a 10-bit uniform quantiser, that one channel use
of the above binary erasure channel corresponds to 10 µs, and that a rate
r = 1/2 code is used to correct the errors that occur in the channel. Is the
corresponding rate achievable at SNR = 10 dB? [4]

(a) Explain the meaning of channel capacity.

The channel capacity is the largest data rate that can be transmitted over a given
communications channel with arbitrarily low error probability.

(b) The binary erasure channel is a channel for which the transmitted bits are
either received correctly with probability 1−ε or erased with probability ε , i.e., there are
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no bit-flips. The capacity of this channel is

C = 1− ε bits/channel use (1)

where ε is the erasure probability. Sketch the capacity of the channel as a function of ε
and shade the region of rates that are not achievable.

The capacity of the above channel is shown in Figure 5. Achievability regions
are shown in the figure. Achievable rates are rates R such that R < C, i.e., the region
underneath the curve. Conversely, rates that are not achievable are the rates R > C, i.e.,
the region above the curve.
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(c) Assume now that the erasure probability ε depends on the signal-to-noise
ratio (SNR) of a given modulation. What sort of relationship would you expect between ε
and SNR? Justify your answer.

We would expect a decreasing relationship, i.e., ε gets smaller as SNR increases.
The SNR represents the quality of a given communications link, and therefore, the larger
the SNR the less errors (erasures in this case) we will have.

(d) If ε = 1
SNR , sketch the capacity of the channel as a function of SNR, shading

again the region of rates that are not achievable.
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The corresponding plot is shown in Figure 6.
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(e) A speech signal of bandwidth B = 3 kHz is to be transmitted over the above
channel, but needs to be digitised first.

(i) How many samples per second do we need from this signal so that we
can reconstruct it perfectly?

According to Nyquist’s theorem we need fs = 2B = 6000
samples/second.

(ii) Show that the quantisation noise variance of a uniform quantiser is ∆2
12 ,

where ∆ is the quantisation step.
Following the notes, we model the quantisation error as a uniformly

distributed random variable on the interval
[
−∆

2 , ∆
2

]
. In order for the

probability density function of the quantisation error to integrate to 1, the
value of the pdf is 1

∆ . Then, the quantisation noise power is

NQ = E[E2] =
∫

x2 1
∆

dx =
∫ ∆

2

−∆
2

x2 1
∆

dx =
1
∆

x33

∣∣∣∣∣

∆
2

−∆
2

=
∆2

12
. (2)
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(iii) If we use a 10-bit uniform quantiser, and one channel use of the
above binary erasure channel corresponds to 10µs, is the corresponding rate
achievable at SNR = 10 dB if we use a rate r = 1

2 code to correct the errors
that occur in the channel?

The resulting data rate is R = 10×2B×1/r = 120 kbits/second.
The capacity at SNR = 10 dB is

c = 1− 1
100.1×10 = 1−0.1 = 0.9 bits/channel use (3)

If a channel use corresponds to 10 µs, then the capacity in bits/second
is C = 0.9

10×10−6 = 90 kbit/second. Therefore the rate R < C is not achievable.
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6 (a) Describe the principal analogue and digital amplitude modulation techniques
and outline the main differences between them. [6]

(b) Consider a signal with B = 5 kHz. Derive, sketch and compare the spectra
obtained with double sideband (DSB) analogue modulation and with binary amplitude
shift-keying (ASK), using the association 0→−A and 1→ +A . Assume sampling at
the Nyquist rate, a 5-bit quantiser and a rectangular pulse. For the purposes of sketching,
assume that the carrier frequency is much larger than B . [8]

(c) For the same set-up as in part (b), how many users can be accommodated in an
FDMA cellular system with total bandwidth 20 MHz, with DSB and ASK modulations?
For ASK modulated users, assume that frequencies beyond the second zero do not cause
interference to other users. How would the result change if a triangular pulse were used
instead of rectangular? [6]

(a) Describe analogue and digital amplitude modulation techniques and outline
the main differences. Sketch the corresponding spectra.

All amplitude modulation techniques (both analogue and digital) modulate the
amplitude of a carrier signal of frequency fc Hz, xc(t) = a(t)cos(2π fct) with the
information signal x(t) in different ways.

(i) Analogue

AMor Amplitude Modulation is a the simplest amplitude modulation
technique. The amplitude of the carrier a(t) = a0 + x(t), yielding

sAM(t) = [a0 + x(t)]cos(2π fct). (4)

From the above expression, AM modulation transmits the carrier signal,
and will therefore be power inefficient. The spectrum is shown in Figure
7. AM requires a transmission bandwidth of BAM = 2B and power

PAM =
a2

0
2 + Px

2 = Pc + 2PSB where Pc =
a2

0
2 is the carrier power and

PSB = Px
4 is the power required to transmit a single sideband.

DSB-SCor Double Side Band - Suppressed Carrier is effectively equal to AM
by letting a0 = 0, i.e., the carrier is not transmitted, which improves power
efficiency. The resulting modulated signal is

sDSB−SC(t) = x(t)cos(2π fct) (5)

Version: 4 (cont.



17

and its spectrum is shown in Figure 7. The bandwidth required to transmit
a DSB-SC signal is BDSB−SC = 2B and power PDSB−SC = 2PSB being
therefore more power efficient than standard AM.

SSB-SCor Single Side Band - Suppressed Carrier, transmits only a single
sideband, since the other sideband can be obtained from the other (by
symmetry), thus saving bandwidth. The corresponding spectrum is
shown in Figure 7. The bandwidth required to transmit an SSB-SC
signal is BSSB−SC = B and power PSSB−SC = PSB being therefore more
bandwidth and power efficient than AM or DSB-SC.

(ii) Digital

ASKor Amplitude Shift Keying produces a digitally modulated signal, once
the information signal x(t) has been digitised (sampled and quantised).
The resulting string of bits is then mapped onto the amplitude of a carrier
signal as follows

sASK(t) = ∑
k

bk p(t− kT ) acos(2π fct) (6)

where bk are coefficients that the information bits (typically 0,1 or
±1), and p(t) is the pulse shape (assumed to be rectangular pulse)
that represents bits. In the case of bk = ±1 ASK is equal to BPSK
(Binary Phase Shift Keying), since multiplying a carrier signal by ±1
is equivalent to change the phase from 0 to π radians. The spectrum in
digital modulations depends heavily on the pulse shape. In the case of
a rectangular pulse (whose spectrum is a sinc function), the spectrum is
shown in Figure 8.

(b) Consider a signal with B = 5 kHz. Calculate, sketch and compare the spectra
obtained with double sideband (DSB) analogue modulation and with binary amplitude
shift-keying (ASK), using the association 0 → −A and 1 → +A, assuming sampling at
Nyquist rate, a 5-bit quantiser and a rectangular pulse. For sketching purposes, assume
that the carrier frequency is much larger than B.

As shown above, the DSB signal at positive frequencies occupies a bandwidth of 5
kHz. Instead the ASK signal, sampled Nyquist rate, and quantised with a 5-bit quantiser,
yields a rate of R = 5×2B = 50 kbit/s. This means that we are transmitting one bit every
T = 1/50,000 seconds. The sinc function has zeros at ± k

T , k = 1, . . . . The approximate
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plot is given in Figure 9. In this plot, only bandwidths are up to scale, not the amplitudes.

(c) How many users can be accommodated in an FDMA cellular system with
total bandwidth 20 MHz, with DSB and ASK modulations? For ASK modulated users,
assume that frequencies beyond the second zero do not cause interference to other users.
How would the result change if a triangular pulse is used instead?

An FDMA system divides the spectrum in equal parts for all users. Therefore we
can accommodate

NDSB =
20,000,000

5,000
= 4000 DSB users. (7)

Since the second zero is at 2
T , then the ASK bandwidth is 4

T , and therefore we can
accommodate

NASK =
20,000,000

4
50,000

= 100 ASK users. (8)

Nothing would change in terms of number of users with a triangular pulse, since the zeros
are in exactly the same places.

END OF PAPER
Examiner: Simon Godsill
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