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 SECTION A 
 
1 Figure 1 shows the Ag − Al phase diagram. 
 (a) The Ag − Al system has one eutectic reaction.  For this reaction, write down: 

(i) the composition; 

(ii) the phases involved; 

(iii) the temperature of the reaction. [4] 

 
 (b) An Ag − 20 wt% Al alloy is cooled slowly to room temperature from the 
melt.  Describe the microstructural changes that occur, noting key temperatures and 
phase transformations.  Illustrate your answer with sketches. [6] 

 
 (c) The following alloys are solution heat-treated, quenched to room temperature 
and then reheated to  200 °C for 5 hours.  Using the equilibrium phase diagrams in Figs 1 
and 2, and Fig. 6.4 on page 30 of the Materials Data Book, suggest solution heat 
treatment temperatures for each alloy. 

(i) Al − 50 wt% Ag (designated A); 

(ii) Al − 10 wt% Mg (designated B);  

(iii) Al − 4 wt% Cu (designated C). [4] 

 
Table I gives the yield strength for alloys A, B and C after slow cooling to room 
temperature, and quenching and reheating to  200 °C.  Explain briefly the differences 
between alloys B and C.  Account for the behaviour of alloy A. [6] 
 

Yield strength (MPa) 
Alumimium alloy  Slowly cooled to room 

temperature 
Quenched and reheated to 

200 °C 
A Al − 50 wt% Ag 120 450 
B Al − 10 wt% Mg 100 100 
C Al − 4 wt% Cu 100 350 

Table I 
 

 
 
 
 

(cont. 
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Fig. 1 

 
Fig. 2 
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2 (a) Explain briefly the difference between diffusive and displacive phase 
transformations and give an example of each. [4] 
 
 (b) Figure 3 shows the microstructures of three plain carbon steels and their 
corresponding values of hardness.  Identify the microstructures and phases present in 
these steels.  Estimate the carbon content of the steels in Figs 3(a) and (b), and explain 
your reasoning.    [5] 
 

 
Fig. 3(a) 

 
Fig. 3(b) 

 

 
Fig. 3(c) 

 
 (c) Table II shows data for the diffusion coefficient,  D , for carbon in bcc Fe.  
Construct an Arrhenius plot of the data in Table II.  From your plot, estimate the value of  
D  at  300 °C and the distance over which carbon can diffuse in one minute at this 
temperature.  Estimate the ratio between the diffusion times needed to diffuse carbon the 
same distance in steel at  200 and  350 °C.   [6] 

 
 
 
 
 

(cont. 
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Temperature (°C) D ( 2 1m  s− ) 
200 167.0  10−×  
250 155.0  10−×  
350 131.0  10−×  
400 133.2  10−×  

Table II 
 
 (d) The teeth on a large gearwheel, made from steel containing  0.15 wt% 
carbon, are case-hardened by carburising at a temperature of  950 °C.  The diffusion of 
carbon into the steel is described by: 
 

( , ) 1 erf
2

o

s o

C x t C x
C C Dt

− ⎛ ⎞= − ⎜ ⎟− ⎝ ⎠
 

 
where  C  is the concentration of carbon at a distance  x  below the surface after time  t ,  

sC   is the concentration of carbon at the surface,  oC   is the initial concentration in the 
steel, and  D  is the diffusion coefficient. 
 
Calculate the time taken to obtain a carbon content of  0.8 wt% at a depth of  1.0 mm if 
the surface of the steel is maintained at a composition of  1.3 wt% carbon during 
carburising.   

 
For the diffusion of carbon in γ-Fe, the activation energy  Q  is 184 kJ mol−  and the 
corresponding pre-exponential factor  oD   is 6 2 12  10  m  s− −× .  [5] 
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3 (a) Define Gibbs free energy  G  and explain why it is a key parameter in the 
study of phase transformations.  [4] 
 
 (b) Show that the critical radius,  r*  , for homogeneous nucleation of a spherical 
nucleus of a solid phase in a liquid phase is given by 

 
2*  
( )

E

V E

Tr
H T T

γ
= −

∆ −
 

 
where  γ   is the surface energy per unit area of the solid phase-liquid interface,  VH∆    is 
the enthalpy change per unit volume associated with the transformation,  ET   is the 
equilibrium temperature and  T  is the temperature of the system.  
 
Explain briefly the difference between heterogeneous and homogeneous nucleation, and 
give an example of heterogeneous nucleation.  Which type of nucleation do you expect 
to occur for a small degree of undercooling?  [6] 
 
 (c) An amorphous glass has a population density of 13 33  10  m−×  spherical 
nuclei available for crystallisation.  It is heat treated to form a completely crystalline 
grain structure.  Assume that crystallisation follows the same nucleation as the 
solidification process in (b). 
 

(i) If the final average grain diameter in the crystalline material is  45 µm, 
estimate the number of nuclei per unit volume which are activated to form 
grains in the final product. [3] 

 
(ii) The spherical nuclei have radii evenly distributed between  2 nm  and  
5 nm  as illustrated in Fig. 4.  Use your answer in (i) to calculate the critical 
radius  r*  of the nucleus. [4] 

 
(iii) What temperature should be chosen for the heat treatment in order to 
obtain an average grain size of  45 µm  in the crystalline material?  [3] 

 
The surface energy between amorphous and crystalline glass is  γ   =  0.18 2J m− , the 
enthalpy change per unit volume on crystallisation is  9 31.5  10  J mVH −∆ = − ×  and the 
crystallisation temperature is  ET   = 850 °C. 
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Fig. 4 
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 SECTION B 
 
4 (a) Sketch a typical creep curve, and label carefully the different stages of creep.  
Describe briefly the contribution of each stage to creep life. [3] 
 
 (b) Explain briefly the mechanisms by which dislocation creep and diffusion 
creep occur.   [4] 
 
 (c) A nickel-based alloy ( 3 = 8900 kg mρ − ) is to be used as a turbine blade.  
The root radius  rr   and tip radius  tr   of the blade, illustrated schematically in Fig. 5, are  
0.2 m  and  0.3 m , respectively.   
 

(i) For a constant angular speed  ω , write down an expression for the 
acceleration as a function of the distance  r  from the centre of the turbine.  [2] 
 
(ii) Assuming that the cross-sectional area  A  of the blade is constant along 
its length, show that the stress  σ  at the root of the blade is given by: 
 

2
2 2( )

2
r rt r

ρωσ = −  [4] 

 
(iii) The steady-state creep behaviour of the alloy can be described using the 
diffusional creep equation; 
 

exp QB
RT

ε σ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

&  

 
where  &ε   is the steady state strain rate,  B  is a constant,  Q  is the activation 
energy for creep and  R  is the gas constant. 
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Show that the rate of change of the blade length with time is given by: 
 

2
2

2 
 

exp ( ) 
2

t

r t
r
r

dl QB r r dr
dt RT

ρω ⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫  

 
If the turbine blade operates at a temperature of  900 °C and a rotational 
speed of  12000 rpm, determine the length change in the blade after 
continuous operation for  1000 hours.   
(For this alloy,  1 11 1 2 1  = 135 kJ mol  and     4.0 10  N  m  s .Q B− − − −= × ) [5] 

 
(iv) What microstructural features can be modified to reduce diffusional 
creep deformation? [2] 
 

 
Fig. 5 
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5 (a) Consider a two-dimensional foam having a square unit cell as shown in 
Fig. 6(a).  Each cell has a side length  L  and wall thickness  t .  The density and Young’s 
modulus of the foam are  *ρ   and  *E , respectively, and the density and Young’s 
modulus of the material from which the walls are made are  sρ   and  sE  .  Estimate: 

 
(i) the relative density of the foam  * / sρ ρ  ; [4] 
 
(ii) the relative Young’s modulus of the foam,  * / sE E  , when loaded in the 
vertical direction, in terms of the relative density,  * / sρ ρ  .  Assume that the 
deformation is dominated by bending (  t << L ) and that the end-clamped 
condition is applicable. [8] 

 
 (b) Consider two open-cell foams of the same relative density.  Foam 1 has a 
square unit cell as shown in Fig. 6(a).  Foam 2 has a rectangular unit cell.  The cell has a 
width  14L   and height  1L   as shown in Fig. 6(b).  The foams are made of the same 
material and the walls in both foams are of the same thickness. 
 

(i) Express the cell dimension  1L   in terms of  L . [4] 
 
(ii) Calculate the ratio of the Young’s moduli of the two foams when loaded 
in the vertical direction, assuming the same deformation mode.  [4] 
 

 
Fig. 6 
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6 (a) Explain why dashpot and spring elements are useful in describing the 
viscoelastic behaviour of polymers.  Write down the governing equations for each 
element.   [4] 
 
 (b) The deformation response of a certain polymer can be represented by the 
dashpot / spring arrangement shown in Fig. 7.  One branch of the model consists of a 
linear elastic spring of modulus  1E  .  A second branch, loaded in parallel with the first 
branch, consists of a linear elastic spring of modulus  2E   in series with a linear dashpot 
of viscosity  η .  The macroscopic stress and strain are  ( )tσ   and  ( )tε   respectively, as 
shown in Fig. 7.   
 

(i) Derive the differential equations relating the total strain rate  ( )& tε   to the 
stresses  1( )tσ   and  2( )tσ   in each of the two parallel-loaded branches.  [4] 
 
(ii) At  t  = 0 , a strain  oε   is applied and held constant.  Find an expression 
for the stress contributions  1( )tσ   and  2( )tσ   in both branches.  If  

2E   = 400 MPa  and  12 =  2  10  MPa sη × , calculate the relaxation time  τ  .  
Show that the relaxation modulus  ( )rE t   is given by:  

 

1 2
/( ) er

tE t E E τ−= +  [12] 
 
 

 
Fig. 7 
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