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SECTION A
Answer not more than two questions from this section.

1 It should be noted that parts (a) and (b) of this question are unrelated.

(a) A hot water pipe has an outside diameter of 15 mm and a surface
temperature of 60 °C. Material with thermal conductivity 0.03 Wm™ K™ is to be
used to insulate the pipe. The outside diameter of the insulation is 50 mm and the
surface heat transfer coefficient is 6 Wm=2K™!. The surrounding room temperature is

10 °C.

(i) Show that for radial heat conduction through an annular layer of
thermal conductivity A with inner and outer radii of 7, and 7,
respectively the thermal resistance (per unit length) is:

ln(r2 /7‘1)
27A

(i) Assuming that the surface temperature of the hot water pipe does not
change when the insulation is fitted, calculate the convective heat transfer
loss per unit length, ignoring radiation.

(iii) The insulation around the pipe can be considered as a grey body with
emissivity of 0.8 and the room is a black body. Assuming that the surface
temperature of the insulation is the same as in part (ii) above, calculate the
heat transfer loss per unit length due to radiation.

(b) A large metal heat sink operates at a steady uniform temperature, Ij.
There is a circular hole of diameter d in the heat sink. Water is pumped through this
hole to cool the heat sink. The water is supplied at temperature 7; and the mass flow
rate through the hole is 7. The arrangement is shown schematically in Fig. 1. The
surface heat transfer coefficient between the water and the heat sink is % and the
specific heat capacity of the water is ¢,. Both # and ¢, are constant along the hole
and the water remains in the liquid phase.
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the water is given by:

T(x)=Ty ~(Ty~T, )exp{ —mdh x}
m Cp

Show that at a distance x along the hole the temperature 7(x) of

The hole in the heat sink has diameter 5 mm and is 0.5 m in length. The water is at a
pressure of 5 bar throughout the hole and the mass flow rate is 0.06 kgs™. The water
enters the hole at 25°C and the water temperature at exit must be at least 20 °C
below the saturation temperature.

(ii) Determine the flow regime within the hole.

(iii) Estimate the Nusselt number for the water flow.

(iv) Calculate the maximum operating temperature of the heat sink.

Suitable correlations for the convective heat transfer are given in the Thermofluids Data
Book. You may assume that liquid water at 5 bar has the following average properties:
970 kg m=, dynamic viscosity = 0.56x% 1073 kg s'm™, thermal
conductivity = 0.65 Wm™ K™ and specific heat capacity = 4.22 kIkg 'K,

density =

S T(x)
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2 (a) Explain why the enthalpy # of superheated water vapour at low partial-
pressure p and temperature 7' may be approximated by either of the two following
expressions:

h(p.T)=hy| +cps(T—Tg|p],

or h(p,T)zhg,T

where the subscript g refers to conditions on the saturated vapour line and ¢, is the
specific heat capacity at constant pressure.

(b) If the water vapour within an air-conditioning plant is modelled as a perfect
gas, show that the specific gas constant is R, = 0.462 kag_lK—1 .

An air-conditioning plant, shown schematically in Fig. 2, operates at atmospheric
pressure and consists of a cooler followed by a heater. Moist air enters the air-
conditioning plant at 30 °C and relative humidity ¢ =79% (state 1). The condensate
is removed beneath the cooler (state 2). The temperature of the condensate is the same
as the moist air after the cooler (state 3). At state 3 the moist air is saturated. At exit
from the air-conditioning plant the moist air is at 20°C and relative humidity
¢ =40% (state 4). The mass flow rate of moist air entering the plant is 15 kg s7L

(c) Show that the mass flow rate of water vapour entering the air-conditioning
plant 7z, is 0.3125 kgs™.

(d) By considering the flow through the heater (state 3 to state 4) show that the
temperature 73 before the heater is approximately 6 °C. Determine 1y, the mass
flow rate of water vapour at exit.

(¢) Determine Q.. the rate of energy input to the heater.

() Determine 1, the mass flow rate of condensate.

(g) Determine Qcoole, the rate of energy extracted by the cooler.

Throughout this question you may assume that the specific heat capacity at constant
pressure for superheated water vapour at low partial-pressures is 1.86 kJ kg"1 K1
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3 An ideal refrigeration plant for a ‘cold-store’ is shown in Fig. 3. Both the
compressor and turbine are reversible and the working fluid is R-134a. Saturated
vapour enters the adiabatic compressor at —15°C and saturated liquid enters the
adiabatic turbine at 50 °C.

(a) Calculate the maximum possible coefficient of performance for a
refrigeration plant operating between the above two temperatures.

(b) Explain why in most practical refrigeration cycles the turbine is replaced by
a throttle.

(¢) Sketch the thermodynamic cycle of the refrigeration plant on both ‘p—h’
and ‘T-s’ diagrams. Indicate clearly how the cycle would be changed if either the
turbine or the compressor were not reversible.

(d) Show that for the reversible compressor the conditions at condenser entry
correspond to 8.44 K of superheat.

(e) Calculate the specific enthalpy of the refrigerant at entry to the evaporator
for the reversible turbine.

() Calculate the coefficient of performance for the refrigeration plant and
comment on the value compared to that calculated in part (a).
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[2]

[2]

[6]

[3]

[2]

[5]



SECTION B
Answer not more than two questions from this section.

4  For a cylinder of diameter d moving perpendicular to its axis with constant
velocity V' through an infinite fluid of density p and dynamic viscosity x the drag
force per unit length is F. Figure 4 shows how the drag coefficient C, depends on

the Reynolds number Re.
(a) Give appropriate definitions for the drag coefficient and Reynolds number.

(b) Explain the physical interpretation of the Reynolds number.

(¢) Explain why at low Reynolds number Cp o< (Re)_1 .

(d) Explain carefully why the drag coefficient reduces when the Reynolds
number is increased from A to B on Fig. 4. Include in your explanation sketches of
the likely flow pattern around the cylinder at both these Reynolds numbers and
comment on the changes in the relative sizes of the ‘skin-friction drag’ and ‘form drag’.

(¢) Determine the drag force per unit length for the following:
(I a 25 mm diameter cylinder moving at 60 ms™ in air;
(i) a 0.6 mm diameter ‘fishing line’ in water moving at 2 ms™.
Both can be assumed to be operating at sea level conditions.
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5 An incompressible fluid with velocity ¥; and density p approaches a row of

long flat plates, as shown in Fig. 5. The flat plates can be considered to have zero
thickness and are spaced w apart at an angle [ to the oncoming flow direction.
Between each adjacent pair of plates there is a steady region of separated flow within
which there is negligible velocity. This region causes a reduction of the flow area
forcing the oncoming flow to form a ‘free-stream jet’ between the plates. Towards the
end of the plates, the free-stream jet is parallel and occupies a fraction 1/6 of the
geometrical area between adjacent plates. Between the plates, there is no mixing of the
separated region with the free-stream jet.

(@) Explain why, towards the end of the plates, the pressure p; in the free-

stream jet and in the separated region are the same.

(b) Show that the velocity within the free-stream jet V; is given by:
7 =
cosfB

(c) By applying the steady flow momentum equation in the direction parallel to
the plates (i.e. at an angle [ to the oncoming flow) to the flow through the control
volume indicated in Fig. 5 and ignoring any shear stress on the surface of the plates

show that:
pyweosf +mVicosf = p; weosff +mV;

where p; is the pressure of the oncoming flow and m is the mass flow rate per unit

height passing between each pair of plates.

(d) Explain why Bernoulli’s equation can be applied along a streamline between
the oncoming flow into the free-stream jet. Show that:

b=1+|sinf|

(e) Far downstream of the row of flat plates, the free-stream jets and the wakes
formed by the separated regions mix to form a uniform flow. Calculate the flow angle
o, far downstream of the row of flat plates.
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6 A large circular reservoir of diameter D and depth H feeds a viscous fluid into a
vertical pipe of small diameter d and length 4 , as shown in Fig, 6. The fluid has
density p and dynamic viscosity u.

(a) Assuming that D >>d , explain why viscous forces are only expected to be
important in the vertical pipe.

(b) By considering a suitable control volume, or otherwise, show that the
equation that governs the distribution of shear stress 7 across the vertical pipe is:

10 _@__
r or (rt)= ox Pg

where 7 is the distance from the centre of the vertical pipe, p is the pressure, g is the
acceleration due to gravity and x is the distance down the vertical pipe.

(c) Explain why the pressure gradient is constant along the vertical pipe.

(d) Show that the velocity profile in the vertical pipe is:

v(r)=#(pg—g—§](d2 —4r2)

(¢) Find an expression involving p , g , H and h for the pressure gradient.

(f) Calculate the volume flow rate along the vertical pipe.
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Fig. 6
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