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SECTION A

Answer not more than two questions from this section.

1 (a) Sketch the region R in the first quadrant of the (x,y)-plane which lies
between the curves y=x, y=2x, xy=1 and xy=2.

(b) By using a change of variables or otherwise, evaluate the area of the region

(c) Consider the vector field
V=yi—xj

b4

where i and j are unit vectors in the directions of the x- and y- axes. Using Stokes

theorem, evaluate the integral

lzij.dr
C

where C is the curve that encloses R in an anticlockwise direction.
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2 (a) The cooling fin shown in Fig. 1 of width 2d extends from x=0 to x=co,
The temperature at the root of the fin x=0 is T =T*cos(7y/(2d)), and the temperature
onthefaces y==+d is T =0. A steady state temperature ficld is established, governed
by V2T =0. Find T(x,y) using the method of separation of variables.

(b) The heat flux vector is defined by q = —AVT , where A is the thermal
conductivity, which may be considered as uniform.

(i) Find the value of the line integrals 7{ q-dl and /

Qo
q-dl where C

isthe curve OP QR O showninFig. 1,and Q is the point (d,—d).

(i) Find Vxq and Vx(Tq).
(i) Show that V-q=0 and V.(Tq)<O0.

(iv) Use the coordinate-free definition of divergence to rewrite V-.-q asa
surface integral and hence provide a physical interpretation of V.q=0.

A
Yy
2d >
0 R x
P 0]

T=T* cos (ny/(2d))

N1

Fig. 1
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3 Consider the vector field
B=(2x+yz)i+ xzj+ flx,»2)k

where 1, j, k are unit vectors in the x, y and z directions respectively.

(a) Describe the conditions on f(x,y,z) such that B is a conservative field, and
find a possible scalar potential ¢(x,y,z) of B.

(b) Describe the conditions on f(x,y,z) such that B is a solenoidal field.

Let the surface S be the unit square in the (x,y)-plane (z=0) with corners (0,0),
(1,0), (0,1) and (1,1), and let f(x,y,z) =xy .

(¢) Compute the flux of B through §.

(d For f(x,y,z) =xy and V being the unit cube with corners (0,0,0),
(0,0,1) ... (1,1,1), compute the volume integral

/de.
Vv
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SECTION B

Answer not more than two questions from this section.

4 The two random variables X; and X, represent the number of dots on each die
after rolling a pair of dice. The random variables ¥; and Y, are defined as:

Nn=X1+X, and =X —-X.
(a) What is the covariance between Y} and Y, ?
(b) Are Y] and Y, independent? Explain your answer.
(c) Whatis the mean and variance of Z =Y, -1, ?

(d) What is the probability of observing ¥, =0 at least twice in 25 rolls of the
two dice?

(e) 25 rolls are performed and Y, = 0 occurs only once. Does this outcome
constitute statistically significant evidence that the dice may not be “fair”? Explain your
answer.
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5 Consider the matrix A given by:

1 20
A=|2 21|,
0 -2 x
where x is a variable.
(a) Compute the value of 43|, i.e. the determinant of the third power of A . (4]

(b) Assuming x =1, find a unit vector, v which solves Av =0, where 0 isa
vector of zeros. [4]

(c) Assume x is a zero mean, unit variance Normal random variable, i.e.
x ~ N(0,1). What is the distribution of the determinant of A ? [4]

(d) Assume that v = gz, where a isa Normal random variable with mean 2
and variance 2, and

Find a value of x suchthat Av=Av hasasolution for A with non-vanishing probability. [8]



6 Consider the matrix

N

i
O = N
R\
No= O

(a) Calculate the inverse of A .

(b) For a matrix with positive eigenvalues, the power method for finding the
largest eigenvalue/eigenvector pair of a matrix iterates the following steps:

X 1= Av, Vi1 = X/|x|,

starting from an initial arbitrary vector v . Here [x| is the Euclidean norm of x. Explain
how the method works, and what requirements must be satisfied by the initial vector vy .

(¢) For a non-singular matrix, modify the power method to find the eigenvalue
with the smallest absolute magnitude.

(d) What happens when the power method is applied to a matrix with negative
eigenvalues?
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