Answers

- 1. (b)(i) 70.5 MPa, -7.58 MPa, 39.04 MPa (36.3° clockwise from horizontal axis)
- 2. (b)(i) $[1, 0, -\sqrt{2}, 0, 1, 1, -1, -\sqrt{2}, 0,2]W$ (ii) $[-1, -1, \sqrt{2}, \sqrt{2}, -1, -1, 0, 0, 0, 0]W$; $[0, 0, 0, 0, 0, -1, -1, \sqrt{2}, \sqrt{2}, -1]W$ (iii) [0.45, -0.55, -0.64, 0.78, 0.45, -0.04, -1.49, -0.72, 0.69, 1.51]W
- 3. (a)(i) 0.065P (ii) 0.016P
 - (b) 2200 N, 2196 N
 - (d) -0.56 mm
- 4. (a) 0.192WL
 - (b) $6.66M_P/L$
- 5. (a) $H = 6.83 M_P/R$
- 6. L/H=0.75

C J Burgoyne 19th June 2009

Numerical answers to Paper 3 (2009)

1. (c)
$$\sigma_{xx} = Y \left[1 - \exp\left(\frac{\ell - x}{L}\right) \right]$$
, where $L = \frac{\overline{h}}{\mu + \tan \alpha}$

(d)
$$F = 2\overline{h}Y \left[\exp\left(\frac{(\mu + \tan \alpha)\ell}{\overline{h}}\right) - 1 \right]$$

2. (b) Fraction of eutectic mix = 0.5 Weight fraction of α in eutectic mixture = 0.768 Weight fraction of β in eutectic mixture = 0.232

3. (b)(ii)
$$\frac{\dot{\tau}\eta}{G_2} + \left(\frac{G_1 + G_2}{G_2}\right)\tau = \eta\dot{\gamma} + G_1\gamma$$

(b)(iii)
$$\gamma = \frac{\tau_0}{G_2}$$

$$\gamma = \frac{\tau_0}{G_e} - \left[\frac{\tau_0}{G_e} - \frac{\tau_0}{G_2}\right] \exp\left(-\frac{G_1 t}{\eta}\right),$$

where
$$\frac{1}{G_e} = \frac{1}{G_1} + \frac{1}{G_2}$$

- 5. (b)(i) Requires carbon in the range 0.5 to 1.02 wt%
 - (b)(ii) time = 10.18mins.
 - (b)(iii) peak at $x = 94 \mu m$

Part IB Paper 8 Selected Topics Section B Civil Engineering Elective

Answers

- Q 3a) East side at 12.5m and 25m depths N = 1.67 & 2 respectively (open face tunnelling is possible)
 West side at 12.5m depth, sand so closed face tunnelling; at 25m depth N=16.67 so closed face tunnelling is required
- Q 4a) P = 3264 kN/m
 - 4b) P = 4104 kN/m
 - 4c) P = 2808 kN/m
 - 4d) P = 3146 kN/m
- Q 5a) Max BM at the corner = 187 kNm; Max BM at the centre = 533 kNm
 - 5b) d = 360 mm (including cover)
 - 5c) $A_s = 5919 \text{ mm}^2/\text{m}$ at the centre; $A_s = 1685 \text{ mm}^2/\text{m}$
 - 5d) no point in double reinforcement as peak BM is not over a short distance and the section is already congested.

SPGM