
IB Paper 6, 2009: Solutions

SECTION A

1. Pole locations, stability, closed loop transfer function, step response

(a) For an asymptotically stable system the real part of the poles must lie in the left
hand part of the s-plane. If they are a complex conjugate pole pair they give rise
to an oscillatory response: the cosine of the angle of the poles to the real axis is the
damping factor. The larger the negative real part the faster the response decays. The
imaginary part gives the frequency of oscillation. If poles are on the imaginary axis
they are marginally stable, and if repeated or in the right-hand half plane unstable.
An appropriate sketch is: [6]

(b) The CLTF is
G(s)

1 +K(s)G(s)
.

Applying this formula to G(s) = 4
s+3

and K(s) = 1
s−1

gives the desired result. [3]

(c) Open loop poles are at s− 3, s = +1. Hence it is unstable. The closed loop has
(two) poles at s = −1 and hence it is stable. [3]

(d) From the question the CLTF is

4(s− 1)

(s+ 1)2
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With a unit step input then the transform of the output will be

ȳ(s) =
4(s− 1)

s(s+ 1)2

Applying partial fractions:

4(s− 1)

s(s+ 1)2
=
A

s
+

B

s+ 1
+

C

(s+ 1)2

By cover up rule A = −4, C = 8. Multiply by LHS denominator and compare coefs
of s2 implies A+B = 0, and hence B = 4.

Hence finding the inverse Laplace transform (from data book)

y(t) = −4 + 4e−t + 8te−t

y(0) = 0

y′(t) = −4e−t + 8e−t − 8te−t

y′(0) = 4

As t → ∞ then y(t) → 4. For turning points set y′(t) = 0 which yields a maximum
at t = 0.5. Also to find when the curve crosses the axis i.e.y(t) = 0 when et = 1 + 2t.
This is at t = 0 and at approx t = 1.25 (by iteration).

A sketch of y(t) showing the above features follows: [8]
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2. Nyquist Diagrams

(a) The Nyquist diagram shows the real and imaginary parts of the steady state
frequency response for a range of frequencies for the open loop system. To construct,
need a sinusoidal input to the open loop system, when at steady state, measure the
magnitude and phase and convert to the real and imaginary parts. This should be
done for a range of frequencies (often with logarithmic spacing) over the range of
interest. [3]

(b)(i) To construct the Nyquist diagram set s = jω and measure G(jω).

G((jω) =
1

jω(1− ω2 + 2jω)

As ω →∞, the | · | → 0 and phase to −3π
2

.
As ω → 0, | · | → ∞ and phase to −π

2
.

In fact as can be seen from a Taylor expansion, as G(jω → 0) → −2 (which is the
required asymptote). For ω = 1, G(jω) = −0.5. Hence the Nyquist plot can be
drawn: [5]
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(b)(ii) The magnitude of the closed-loop frequency response is

|K.G(jω)|
|1 +K.G(jω)|

From the Nyquist plot, for K = 1 the numerator is the distance from the origin to
the point on G(jω) curve at a particular frequency. The denominator is the distance
from (-1,0) to the point on the G(jω) curve. [2]
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(b)(iii) Gain margin is simply the reciprocal of the intersection with the negative real
axis. Since ω = 1, G(jω) = −0.5, the gain margin is equal to 2. [2]

(b)(iv) The jω term on the denominator gives a phase of −90◦. If the phase margin
is 60◦ then

tan−1 2ω

1− ω2
= 30◦

2ω

1− ω2
=

1√
3

ω = −
√

3± 2

ω = 2−
√

3

= 0.268

The magnitude is
K

ω(1 + ω2)

and at the phase margin the magnitude is equal to 1. Equating gives the magnitude
as 3.482. Hence the corresponding value of K = 1

3.482
= 0.287. The closed-loop

frequency response is simply given by the ratio of two unit lengths if the phase
margin is 60◦, and is hence equal to one.

If the phase margin were smaller than 60◦, this would imply the magnitude of the CL
frequency response and the value of ωc both increase, which implies that K increases.

[8]
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3. Bode Plots

(a) For an asymptotically stable open-loop system: the phase margin (if it exists) is
the increase in (negative) phase before the system becomes unstable at constant gain;
the gain margin (if it exists) is the factor that the gain must increase at constant
phase before the system becomes unstable (measured when phase angle = −180◦). [3]

(b) For the GM, find when the phase plot is at −180◦, and find the difference between
0dB and the plot. This is equal to 3dB (at 25 rad/s). For the PM, find when the
gain plot is at 0dB, and find the difference between the plot and −180◦. This is equal
to 10◦ (at 22 rad/s). [4]

(c) First draw the plot for the compensator. Note that the numerator has a break-
point frequency of 10 rad/s (20 dB/decade increase in magnitude at this point), and
the denominator has a breakpoint at 40 rad/s. The overall compensator has a 0.5
term on the numerator which reduces the gain by 6dB at low frequencies (the high
frequency gain is increased by 6dB). The effect on phase will be over a wide range of
frequencies (approx 1 rad/s to 400 rad/s). Need to compute some sample points of
the phase advance due to the compensator in order to yield an accurate plot.

For instance at ω = 10 phase advance is tan−11− tan−10.25 = 31◦. At ω = 20 phase
advance is tan−12 − tan−10.5 = 37◦. etc. Combining these yields a Bode plot for
the original (solid line), compensator alone (dash-dot line) and compensated loop
(dashed line): see Fig. 1.

Measuring from the plot yields a phase margin of 44◦ (at 22rad/s) and a gain margin
of 11dB (at 45 rad/s). [9]

(d) The main difference in response is that the compensated loop is less oscillatory
(the uncompensated loop has a small PM and is close to instability). To find the
steady-state error for a unit step input need to use final value theorem. This means
that final value of y(t) can be found as the zero frequency value of the closed-loop
frequency response:

K(0)G(0)

1 +K(0)G(0)
=

12K(0)

1 + 12K(0)

The steady state error is 1− final-value or

1

1 + 12K(0)

Hence for K = 1, steady-state error = 1
1+12

= 1
13

.

For compensator K(0) = 0.5, steady state error = 1
1+6

= 1
7
. [4]
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Figure 1: Bode plots for the original loop, compensator and compensated loop, for use
with phase margin and gain margin calculations
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SECTION B

4. Fourier transforms

(a) Need to show that

F{x(t) ∗ y(t)} = F{x(t)}F{y(t)}

where ∗ and F{.} denote the convolution and Fourier transform operators, respec-
tively.

F [x(t) ∗ y(t)] =

∫ ∞
−∞

(∫ ∞
−∞

x(τ)y(t− τ)dτ

)
e−jωtdt

=

∫ ∞
−∞

(∫ ∞
−∞

x(τ)y(t− τ)e−jωtdt

)
dτ

=

∫ ∞
−∞

x(τ)

(∫ ∞
−∞

y(t− τ)e−jωtdt

)
dτ

=

∫ ∞
−∞

x(τ)

(∫ ∞
−∞

y(x)e−jω(x+τ)dx

)
dτ

= Y (ω)

∫ ∞
−∞

x(τ)e−jωτdτ

= X(ω)Y (ω)

where the first step follows from the definitions of convolution and Fourier transform,
the second stem follows from a change of integration order and the fourth step follows
from the change of variables x = t− τ . The other steps are straightforward. [4]

(b)(i) The signals xi(t) are sinusoids multiplied by a rectangular pulse p(t). Therefore,
by applying the convolution property in the frequency domain, the overall Fourier
transform is the convolution of the Fourier transform of the sinusoid and the Fourier
transform of the rectangular pulse. Writing

sinωit =
1

2j
(ejωit − e−jωit)

Xi(ω) =
1

2j
(P (ω − ωi)− P (ω + ωi))

where P (ω) is the rectangular pulse Fourier transform. Since the pulse is centered
at the origin, we obtain that [5]

P (ω) = T sinc

(
ωT

2

)
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Figure 2: Sketch of |Y (ω|

(b)(ii) The Fourier transform of y(t) consists of 2 shifted sinc functions. The sinc
functions have zeros at ωi ± n2π

T
. Hence, for large T (more observation, more resolu-

tion), the resulting transform will resemble 2 delta functions, while for small T (poor
observation, poor resolution) we might not be able to distinguish the 2 peaks.

As above, large T implies better resolution, as the zeros of the sinc are at n
T

. Hence
the larger T , the better estimation of ωi. On the other hand, for small T , the main
lobe of the sincs will be wide, and it will be difficult to distinguish the two tones if
they are close to each other. [7]

(b)(iii) The triangular pulse has a steeper decay (although the zeros are in the same
positions). Therefore, it will increase the resolution in the frequency domain. [4]
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5. Sampling/Quantisation

(a)

xs(t) = x(t)
∑
n

δ(t− nTs) =
∑
n

x(nTs)δ(t− nTs)

where Ts is the sampling period. Since the Fourier transform of a train of delta
functions is a train of delta functions,∑

n

δ(t− nTs)←→
1

Ts

∑
m

δ

(
f − m

Ts

)
the Fourier transform of the sampled signal xs(t) is given by

Xs(f) = F
[
x(t)

∑
n

δ(t− nTs)
]

= F [x(t)] ∗ F
[∑

n

δ(t− nTs)
]

= X(f) ∗ 1

Ts

∑
m

δ

(
f − m

Ts

)
=

1

Ts

∑
m

X

(
f − m

Ts

)
.

Hence the Fourier transform of the sampled signal consists of the the Fourier trans-
form of the original signal translated at multiples of the sampling frequency. Hence,
if the the sampling frequency is larger or equal than 2B we can recover the origi-
nal signal with an ideal filter. Otherwise, the multiple copies will overlap, causing
aliasing, and perfect reconstruction is not possible. [5]

(b) The quantisation noise is e(t) , x(t) − xQ(t) ∈
[
−∆

2
, ∆

2

]
, where xQ(t) is the

quantised signal. We model e(t) as a uniformly distributed random variable between
[−∆

2
, ∆

2
] The noise power can therefore be calculated as

NQ = E[e2] =

∫
x2 1

∆
dx =

1

∆

x3

3

∣∣∣∣∣
∆/2

−∆/2

=
∆2

12

and its corresponding RMS is ∆√
12

. [5]

(c) For sinusoidal waves, the SNR depends on the number of bits, n, as

SNR = 1.76 + 6.02ndB

Hence n =
⌈

SNR−1.76
6.02

⌉
= 5. [4]

(d) The minimum data rate is R = 2Bn = 10B. [2]

(e) The quantiser gives a finer quantisation when the input signal has a small magni-
tude. Therefore, the quantiser is advantageous for signals that take on small values
more often than large values. Signals that have an approximately Gaussian pdf would
be suited for this type of quantisers. [4]
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6. Modulation/Multiple Access

(a) Modulation is the process of shaping one or multiple parameters of a carrier
wave according to a given information signal x(t). Modulation is used in practice to
translate the baseband information signal to a frequency range where the attenuation
introduced by the channel is low. In wireless communications, modulation is further
used to keep the size of the antennas small. [2]

(b) From lecture notes, the bandwidth of AM and DSB-SC is 2B, while that of SSB-
SC is B. Using Carson’s approximated rule, we obtain that for FM, the bandwidth is
2(B+∆f), where ∆f is the frequency deviation. Clearly, the bandwidth consumption
of FM is larger than those of amplitude modulations. As for BPSK, the bandwidth
depends on the rate of the digitised signal. In particular, if we sample at the Nyquist
rate and quantise with an n-bit uniform quantiser, we obtain a rate of R = 1

T
= 2Bn

bit/s. Then, assuming a rectangular pulse, we know the zeros happen at multiples of
1/T , where T is the signaling period. Hence, the first zero (or main lobe) bandwidth
for BPSK is 2× 2Bn = 4Bn, which is again larger than that of analogue amplitude
methods. The second zero bandwidth for BPSK is 2× 4B = 8Bn. [5]

(c) Transmission of BPSK modulation over an additive white Gaussian noise (AWGN)
can be modelled as

Y = X + Z

where X ∈ {−A,+A} and Z is a zero-mean Gaussian random variable with variance

σ2. The optimal demodulator will decide X̂ = +A if Y > 0 and X̂ = −A otherwise,
where X̂ denotes the estimated transmitted signal. We want to calculate the error
probability Pe = p(X̂ 6= X). The error probability can be expressed as

Pe = p(X̂ 6= X)

= p(X̂ = +A|X = −A)p(X = −A) + p(X̂ = −A|X = +A)p(X = +A)

=
1

2

(
p(X̂ = +A|X = −A) + p(X̂ = −A|X = +A)

)
=

1

2

(
p(Y > 0|X = −A) + p(Y < 0|X = +A)

)
= p(Y < 0|X = +A)

due to the symmetry of the problem. Conditioned on X = +A, Y is a Gaussian
random variable, with mean +A and variance σ2, i.e., Y ∼ N(+A, σ2). Given that
Y ∼ N(+A, σ2), the error probability can be expressed as

Pe = p(Y < 0|X = +A) =

∫ 0

−∞
pY (y)dy =

∫ 0

−∞

1√
2πσ2

e−
1

2σ2
(y−A)2dy

=

∫ −A
σ

−∞

1√
2π
e−

u2

2 du = Φ

(
−A
σ

)
= Q

(
A

σ

)
= Q

(√
A2

σ2

)
= Q

(√
2SNR

)
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where Φ(x) is the Gaussian cumulative distribution function, Q(x) , 1 − Φ(x) and
SNR , A2

2σ2 . [5]

(d) We find the minimum SNR by inverting the above error probability expression,
i.e.,

SNR =
1

2

[
Q−1(Pe)

]2
We note that 5.10−6 = 1

2
.10−5. Since Q(x) = 1− Φ(x) we get that

1− Φ(x) =
1

2
.10−5

2(1− Φ(x)) = 10−5

From the maths databook (last line page 27), we see that x = 4.417. Then, we obtain
that

SNR =
1

2
[x]2 = 9.7549

Hence SNR ≥ 9.8922 ≈ 10 dB for the error probability to be Pe ≤ 5.10−6. [4]

(e)

The data rate of each user is R = 1
T

= 50 kbit/s.The spectrum of a BPSK signal is
given by

|SBPSK(f)|2 =
1

4

[
|X(f − fc)|2 + |X(f + fc)|2

]
where X(f) = |X(f)|2 = 1

T
|P (f)|2. Since we assume no interference is caused beyond

the second sinc zero, we assume each user occupies a bandwidth of Bu = 4
T

= 200
KHz. Hence the total required bandwidth is B = 4 MHz. If a guard band of 10 kHz
is used, we have that each user occupies a total band of 210 KHz. Hence, the new
total bandwidth is B = 4.2 MHz. [4]
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