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Comments 
 
Question 1 was the most popular question in Section A, attempted by nearly every 
candidate.  The kinematics is similar to the ladder sliding down a wall in the examples 
paper, as picked up by some candidates.  Although part (a) (a standard calculation of 
moments of inertia requiring the parallel axes theorem), was answered well, part (b) 
(analysing the kinematics and inertia forces) caused problems for most.  Common 
errors in this question:   
(i) Neglecting the width of the beam (D) – i.e. treating it as a rod – was common 

in part (a).  The formula for the moment of inertia of a rod was clearly 
familiar, and most used this in conjunction with the perpendicular axes 
theorem to find the moment of inertia of each lamina. 

(ii) The kinematics in part (b) caused difficulties.  The best solutions involved a 
sketch of velocity and acceleration diagrams.  Most attempted to first find the 
angular acceleration using D’Alembert forces, and then integrate it (often 
incorrectly) to get the angular velocity.  This resulted in answers expressed in 
terms of the tip forces acting on the ruler rather than the prescribed velocity.  
Most also incorrectly assumed that only vertical forces exist at the tips of the 
ruler. 

(iii) The acceleration of the centre of gravity of the ruler was often incorrect, the 
most common mistake being to assume that the hinge Q is not accelerating. 

(iv) Many candidates assumed the forces in the pin to act parallel to the short edge 
of the ruler.  Very few could identify correctly the effect of symmetry on the 
direction of the forces at the pin, although this is a common idea in the 
structural mechanics course when dealing with pin jointed arches with 
symmetric external loads. 
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Comments 
 
Question 2, a ball impacting a slope, was also a popular question, attempted by three 
quarters of candidates.  Some candidates showed good intuition for impulse and 
momentum, and were able to solve part (a) almost by inspection after sketching the 
expected motion of the ball. A number struggled to make any progress.  Common 
errors in this question:   
(i) The majority incorrectly assumed in part (a) that the ball rolls down the slope 

after impact, even though nearly all could identify the correct direction of the 
impulse in the absence of friction (normal to the plane, through the centre of 
mass).  Indeed, part (b) – where the ball does roll, nominally a more difficult 
analysis – was answered much better.  The ‘rolling versus sliding’ type of 
question is perhaps more familiar from the examples paper and recent Tripos 
questions. 

(ii) Many included the weight (and as a force, rather than an impulse) in the 
momentum conservation relations during the impact event. 

(iii) Confusion between D’Alembert forces and momentum terms in balance 
equations was common.  Some candidates attempted a ‘D’Alembert impulse’ 
type approach to the momentum balances, nearly always resulting in sign 
errors. 
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Comments 
 
Question 3 was the least popular question in Section A, attempted by a third of 
candidates, but was mostly answered well.  Most understood the principles of kinetic 
energy and moments of momentum for the rotating discs.  But contributions were 
often missed, and errors crept in when summing them up.  Common errors in this 
question:   
(i) The kinematics caused difficulties for a significant number, the most common 

mistake being to take the angular velocity of the planets to be the same as the 
sun (because they have the same radius). 

(ii) The kinetic energy and moment of momentum equations were frequently 
missing the contribution due to the motion of the centre of mass of the planets. 

(iii) Using the wrong expression for the polar moment of inertia of the discs was 
common. 

(iv) The relationship between gyroscopic torque and rate of change of moments of 
momentum was understood by many.  However, errors crept in when 
differentiating the moment of momentum expression, either getting signs 
wrong in the cross product of unit vectors or including a time derivative for the 
unit vector parallel to the precession axis.  
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Solutions to IB mechanics 2010 Section B

April 24, 2015

4) a) The moment of inertia of the skater is 2md2.

b) Moment of momentum of the two skaters before the collision is there-
fore 2(2md2ω). There are no external forces or torques on the system,
so during the perfectly elastic collision, the moment of momentum is
conserved, and so it remains the same.
After the collision the new angular velocity of the skaters is denoted
by Ω and their speeds by v, the moment of momentum after the colli-
sion can be written as 2[(2m+M)vd+(2md2)Ω], so the conservation
of moment of momentum implies

2(2md2ω) = 2[(2m + M)vd + (2md2)Ω] (1)

c) Conservation of energy implies

2
1
2
(2md2)ω2 = 2[

1
2
(2m + M)v2 +

1
2
(2md2)Ω2] (2)

Solving (1) and (2) for v, we have

2
1
2
(2md2)ω2 − 2

1
2
(2m + M)v2 = (2md2)

[
2(2md2ω) − 2(2m + M)vd

(4md2)

]2

ω2 −
(2m + M)

2md2
v2 =

[

ω −
2m + M

2md
v

]2

0 =

[(
2m + M

2md

)2

+
(2m + M)

2md2

]

v2 − 2ω
2m + M

2md
v

v = ω
1

md

(2md)2

2m + M + 2m

= ωd
4m

4m + M

The directions of the equal and opposite velocity vectors are perpen-
dicular to the line joining the two skaters before the collision, along
the line of the impluse received by the skaters.
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5) a) Let us denote the force in the BD struts by T . The angle between
BD and the horizontal is also α. Resolving the forces on the slider
vertically and equating their sum to zero in equilibrium gives

Mg = 2T sin α

Now consider one arm of the tachometer, and take moments around
point A. The mass m is rotating at a distance 2l cos α from the shaft.

0 = mg2l cos α − mω2(2l cos α)(2l sin α) + T l sin 2α

2mgl + Mgl = 4ml2ω2 sin α

sin α =
(2m + M)g

4mlω2

b) The maximum value of sin α is 1, so

ω0 =

[
2mg + Mg

4ml

]1/2

c) Now there is no force from the strut BD, so again considering just
one arm, the moment of inertia of the mass around point A is m(2l)2,
and the torque is given by the first two terms from part a),

m(2l)2α̈ = mg2l cos α − mω2(2l cos α)(2l sin α)

d) Note the following relationship between α̈ and α̇

α̈ =
dα̇

dt
=

dα̇

dα

dα

dt
=

dα̇

dα
α̇

This is now used to integrate the differential equation in part c),

4ml2α̇dα̇ = [mg2l cos α − mω2(2l cos α)(2l sin α)]dα

2ml2α̇2 + C = 2mgl sin α + ml2ω2 cos 2α

where the constant comes from the indefinite integration. Both at
the initial angle and at the maximum height, α̇ is zero, so the implicit
equation

C = 2mgl sin α + ml2ω2 cos 2α

has two solutions, one of them is the initial angle (given in part a),
this fixes C, the other corresponds to the maximum height.

6) a) If the rocker went all the way to the other edge of the well, it would
undergo 1 and 3/4 revolutions, which would orient it with the heavy
side on top, and thus its potential energy would need to be higher
than at the starting point. But since it started from rest, this cannot
happen, so the rocker will stop short of the other edge, at less than
1 and 3/4 revolution.
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b) Cross sectional area of cylinder before drilling is πr2. Area drilled
out is πr2/4. Area after drilling is πr2 − πr2/4 = 3πr2/4. So if M
is the mass remaining, the original cylinder had a mass of 4M/3 and
the mass that was removed is M/3. Therefore the centre of gravity
position is −r/2(M/3)/M = −r/6 away from the geometric centre,
5r/6 away from the edge of the cylinder along the symmetry axis.
To calculate moment of inertia, note that for a uniform cylinder, it is
mass × radius2/2 around its centre, and we need to shift to the new
centre of gravity. So for the rocker, it is

Ig =
4
3
Mr2/2 +

(r

6

)2 4
3
M −

M

3

(r

2

)2

/2 −
(r

2
+

r

6

)2 M

3
=

37
72

Mr2

c) The angle of rotation of the rocker with respect to the vertical axis
is φ − θ. The height of the centre of gravity is

y = R(1 − cos θ) + r cos θ −
r

6
cos(φ − θ)

and rφ = Rθ. The horizontal displacement of the centre of gravity is

x = R sin θ − r sin θ −
r

6
sin(φ − θ)

The kinetic energy is in two parts, the rotation around the centre of
gravity gives

1
2
Ig(φ̇ − θ̇)2

and the speed of the centre of gravity is

v =

(
ẋ
ẏ

)

And the corresponding kinetic term is

1
2
Mv2

.

d) For small angles, using R = 7r/4 gives φ − θ = 3
4θ, and the position

vector (x, y)T is,

x =
7
4
rθ − rθ −

r

6

(
7
4
θ − θ

)

=

(
3
4
−

1
6

3
4

)

rθ =
5
8
rθ

y =
7
4
r −

3
4
r(1 − θ2/2) −

r

6
(1 −

9
16

θ2/2) =
5
6
r +

27
64

rθ2

so the potential energy (taking a factor of 1
2 out) is

1
2
Mg

27
32

rθ2
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When working out the total kinetic energy, we will need the rotational
part and the horizontal linear part. The vertical linear part has an
extra factor of θ2, which is small. The total kinetic energy is thus

1
2
Ig

9
16

θ̇2 +
1
2
Mẋ2 =

1
2
Mr2 37

72
9
16

θ̇2 +
1
2
Mr2 25

64
θ̇2 =

1
2
Mr2 87

72
9
16

θ̇2

The frequency ω of small oscillations is given by (k/m)1/2 for a simple
harmonic oscillator with mass m and spring constant k. The oscilla-
tor has a potential energy of 1

2kθ2 and a kinetic energy of 1
2mθ̇2, so

here

k =
27
32

Mgr

m =
87
72

9
16

Mr2

ω2 =
g

r

27
32

72
87

16
9

=
36
29

g

r
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