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1 (a) A Class A amplifier is characterised by the drawing of a constant 
current from  the supply, irrespective of the signal level.  As a consequence, the static 
dissipation in the transistor is high and the efficiency is low.   

A Class B amplifier is one where each transistor conducts for only half the 
cycle resulting in a high efficiency as there is no power dissipation when there is no 
input signal.  However, as the transition between transistors is not smooth, crossover 
distortion occurs. 
  In Class AB amplifiers, the transistors are biased such that they are on 
for more than half the cycle, which improves linearity by removing crossover 
distortion, but reduces efficiency. 
  The circuit in Fig. 1 is a Class A amplifier. 
 
(b)  As the current in R1 and R2 are not equal, we must convert the 20 V and 
R1 and R2 into a Thevenin equivalent: 
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Now we apply a mesh current analysis to the whole circuit shown: 
 
   3V7.00 RIRIVV EthBth −−−==∑  
 
However, we know that 3RIhI BFEE = , so 
   3V7.00 RIhRIV BFEthBth −−−=  
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 (c) The small-signal equivalent circuit is: 
 
 
 

 
Summing currents at  X  (NVA): 
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We need to eliminate bi using the fact that 
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Substituting values gives 
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To get the output resistance, we apply a test input current, i.e. to the output and set 
0=iV .  Summing current at X again gives 
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As before 
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Substituting values gives 
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(d) For maximum power transfer oL RR = and so 
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Ω= 2.19LR

 

At the operating point the voltage at the emitter is 
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However, as the supply rail is at +20 V, the maximum sinusoidal voltage amplitude is 
(20 – 10.7) = 9.3 V.  This is equivalent to an rms voltage of  9.3/√2 = 6.58 V.  Only 
half of this voltage (3.29 V) appears across the load resistor, so 
 

Pout = V2 / RL = 3.292 / 19.2 = 0.56 W 
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2  (a) In the difference amplifier, we are interested in two input signals, in 
this case v1 and v2.  For the purposes of analysis, these are decomposed into two 
components, as shown in the following diagram. 
 
  
 

 

The common mode signal is the average of the two signals – i.e. .
2

21 





 + vv   Normally 

this component will be suppressed by a difference amplifier.  Therefore, any signal 
that is common to both v1 and v2 will not be amplified.  The difference signal is then 
the difference between the two signals – strictly speaking it is v2–v1.  Both v1 and v2 
can be calculated from the common mode and difference signal as 
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In this case, the differential amplifier as ideal as the 50 Hz signal (common-mode) 
will be suppressed. 
 
 (b) Take the voltage at the inverting and non-inverting terminals to be v– 
and v+ respectively.  Perform NVA at the inverting terminal: 
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Also at non-inverting terminal: 
 

  

2

2

92

42

2

11

0

R
v

RR
v

R
v

R
vvI

=







−

+
−

==∑

−

++

 



7 
 

ajf05 

But R1 = R2 and R3 = R4, so 
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 (c) Ri appears as a resistance between the two terminals, so we have the 
following circuit: 
 
  
 

 
 
Performing as NVA at X: 
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Also at Y: 
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Now R1 = R2  and R3 = R4.   Therefore, we can subtract  (1) from (2) to give 
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Now, for a finite gain, we know that 
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  (d) For a gain of 100, we require 
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R1 and R3 should be less than Ri, so no more than 100kΩ .  Therefore, for A~107 the 
term in the brackets becomes negligible, so 
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R1 and R3 should also be much greater than R0 for R0 to be negligible, so greater than 
1kΩ .  Therefore, we select 
 

    R3=100kΩ  
    R1=1kΩ  
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3 (a) High voltage 3-phase as power transmission is favoured as 3 phases 
can be easily produced by a generator, and the voltage stepped up and down easily, to 
minimise transmission line losses using transformers.  In particular, the cost of 
increasing the number of phases increases with the number of wires, while the 
efficiency improvement gained beyond three phases is almost negligible.  Therefore, 
three phases are favoured.  It is necessary to consider a town as being balanced so that 
the three phases are each connected to similar loads, and so the single-phase analysis 
can be applied. 
 
 (b) We know that 
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 (c) Feeder line impedance = ZL = RL + jXL = 2 + 5j.  Therefore, the power 
dissipated in the transmission line , PL, is 
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To determine the voltage at the feeder, we need to know P and Q for the whole 
system.  First, we calculate the reactive power for the town, Qt 
 

   ( )
MVAR0.62

85.0costan10100
tan

16

=
×=

=
−

t

tt

Q

PQ φ

 

 
and the reactive power for the load, QL  
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Hence, for the total system, 
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We can now work out the line voltage at the feeder, VLf, from 
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 (d) For a new power factor of 0.9, 
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Therefore, the reduction is 25.4–22.6=2.8 MW.  This can be achieved by connecting a 
capacitance in parallel with the load across each of the three phases. 
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4 (a)  
  
 

 
 
Synchronicity is lost when δ = ±π/2. 
 
 (b) (i)     First, we need the speed of rotation, ωs.  For a 4 pole system, 

the number of pole pairs, p,  is 2, and so 
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  (ii) To get the excitation voltage, we need the phasor diagram. 
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  For a star-connected system, phL II = , so 
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   We now need the phase voltage 
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 (c) If the excitation is increased whilst the prime mover is held constant, 
then the reactive power will change.  In this case, the real  power is 400 MW and the 
generator rating (due to the stator heating limit) is 750 MVA. 
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5  (a) (i)  First we need the phase voltage and phase power: 
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  Now, the iron loss resistance, Ri, is 
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  (ii) First, we need the apparent power per phase, 
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  The magnetising reactance is therefore, 
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(iii) In the locked rotor test, real power is dissipated in the stator and 
rotor resistances, so 
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  However, R1 = 0.2 Ω, so 
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(iv) For the stator leakage reactance, 
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  Now  X1  is half 2X ′  , so 
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(b) As the parallel loss components are much greater than those in series, the 
former can be ignored as almost no current flows through them.  Hence, we 
can consider the Thevenin equivalent impedance for the circuit to be 
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Therefore, at maximum torque, 
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The speed that this corresponds to is 
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The equation for torque is from the Data Book: 
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The Thevanin voltage for the circuit remains the supply voltage, 240 V. Hence, at 

maximum torque, when  thZs
R =′2  ,  
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 (c) For maximum starting torque, when s=1, we require 
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6  (a) Starting from the circuit diagram: 
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Differentiating (1) with respect to x gives 
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Substituting from (2) 
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Also differentiating (2) with respect to  x gives 
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 (b) From the Telegrapher’s equations, 
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The wave velocity is entirely dependent upon the physical properties of the dielectric.  
This is because the actual electromagnetic wave exists between the conductors in the 
dielectric.  The conductors simply support and guide the wave. 

 
 (c) From the data book, 
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 (d) From the data book, we know that the input impedance to a cable of 
length  l  with a load ZL  is 
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If l = λ/4, then 24.2 πλ
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πβ ==l .  Also tan(π/2) = ∞.  Hence, for l = λ/4 
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We want Zin = 75 Ω for a ZL = 50 Ω, so 
 
    Ω== 2.6150.750Ζ  
 
Now, 
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 (e) In practice an FM signal has a finite bandwidth around the carrier 
frequency.  However, the linking cable will only be fully effective at 10 MHz.  
Therefore, reflections will occur at other frequencies, and the system should be 
designed to take into account the reflections that will occur across the full range of 
frequencies. 
 



20 
 

ajf05 

7 (a) Starting from the reduced form of the Maxwell equation given, 
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Integrating with respect to time gives 
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 (b) First let us calculate  rεωε0  
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For the intrinsic impedance, 
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 (c) If the components of E and H parallel to the boundary surface are 
continuous, then 
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where i, r and t denote the incident, reflected and transmitted waves respectively, and 
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211 ηηη
tri EEE

=−  

 
Substituting for Er from equation (1) gives 
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 (d) The transmitted power density is given by  
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Now, 
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Hence, 
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The power decays as  exp ( )dα2−  where α is the real part of the propagation constant 
and  d  is the thickness of material.  We want a decay factor of 100×10–9/4.53×10–5 = 
2.21×10–2. 
 

   

( )

μm99
307812
116.6

2
116.6

116.62
1021.22exp 3

=
×

=

=∴

−=−
×=− −

d

d

d
d

α

α
α

 


