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Qu1l
a)

Qin \*A

b) T=293.15K, T,=1773.15K

L, [ p "7
Compressor — 1 to 2s 22=| —= - T,=689.9K
I \p

2 T=T+(T = T)/nc =760.0K

Real process 77, = 25—

Sl
’_‘\| I\)\|

- T,=7534K

T, p 77%
Turbine — 3 to 4s =] =L
T, \p

1

Real process 7;= T=T,—n/T,-T,.)=906.4K

-1,
_7;'

-

S

Power balance:- m:‘p(7; ~-T)- r'mp(7; —T,)=350E6 W
m*1.01E63((1773.15-906.4)—(760.0 —293.15)) =350 E6 W

<. IM,,=866.4kg/s

Heat flow rate Q, = M, C,(T, — T,) =866.4*1010* (1773.15—760.0) = 886.6 MW

GT cycle efficiency 75 :35%8 6 6=0.395
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7 HSRG
< 8 8
T ‘// ~
5--"/p
; 6 9
/ 6 9 Qout
S
Enthalpy balance across HSRG:-
Mer (T, = To)=, o(h— 1)
] T -T. * -
— MerG,(T, ~ T5) _ 866.4%1.01(906.4 403)_ 1030 s
: (h—h) (3675-121.4)

[Check on the pinch point:- the h; g, = h, = 1008.4 kl/kg. Heat transferred between
7andpis M, o(h,—h)=123.9(1008.4-121.4)=109.9 MW. The steam temperature at

the pinch point (tables) is 233.85°C. The gas temperature there will be given by
109.9E6=rm,,c,(t,~110)=866.4*1010(t, ~130). Hence t,=255.9 °C — OK]

Power output W/ = m.,zo(hg ~hy)
/‘é =3675kJ/ kg, h) =2260kJ/ kg

- W, =123.9(3675—2260)=175.3MW
c) Total power =350 + 175.3 = 525.3 MW, and the overall cycle efficiency is
S Nee =525.3/886.6 =59.3%

d) Increase GT inlet temperature
Reduce condenser pressure
Reheat in HRSG
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Q2 Soln

,/’/ \\\\ lSt LaW: _QO - (WX + WQ) = m(hz - hl)
1 2" Law: (s, — s;) = ~%
To
Combine the two equations:
mTo(Sz - Sl) - (WX + WQ) = m(hz - hl)
_(WX + WQ) = (hy — hy) — To(s; — 51)
b1 = h1 - T051
T, b, = hy, — Tys, so
/ by — by = (hy — hy) — To(s; — 51)

Tidy up. so b, — b, = —(Wx + WQ)

bl - b2 = ]./i/)C + WQ

Ab = WMAX
b) Surroundings 1 bar, 300 K
1) Entropy change s, —s; = ¢, In {;—2} —RlIn {%}
1 1
Wirax
s = Cp(TZ —T1) — To(s2 — s1)
w

Y~ 325.6 kW kg™

m
i) Isentropic turbine

Wryrs

- m = Cp(TZ -T)
y—1 1.4-1
T, =T, {pz}T = 700{1} " 3864k
2 1 Py 3 .
W
— — 31514 kWkg — 1
315.14
So fraction of max =96.8%
325.6

iii) Theory

Turbine exit is above ambient so a heat engine (reversible) could be run reducing the stream to the dead
state.

2011 IB paper 4 exam solutions



c) Thermal equilibrium T; = 300K = T,

1) Isentropic turbine
. -1
(Cold reservoir)  Tys = Tamp{p2/P1} "~
1.4-1
300{2)
=300}
=165.6 K
Wryrs
- =6 (Tos — T1)
Wayrs

URE — 135.1 kW kg™?
m

. . 135.1
Fraction of lost max available power Y = 41.5%
ii) Real turbine
(Cold reservoir) ny =80% 7y = 22
T1-Tzs
— Tamb—T2
rIT Tamb—T2s

SoT, = Tymp — nT(Tamb - TZS) =192.5K

WTURB
=c,(T, — T
m Cp( 1 2)

W
—TURE _ 108.1 kW kg™?
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Qu 3 Soln

a) The fraction of the radiation leaving body 1 and reaching body 2 is the shape factor
F,,. For a black body of area A,, the radiation leaving 1 and reaching 2 is A,F120T14 .

Similarly the radiation leaving 2 and reaching 1is A,F,oT,". Now, as the bodies are

black, all the energy reaching a body is absorbed, so the net exchange between body 1
and 2 is

Olz =A, ,:120-714 - Az1F210-7;4

Now by the reciprocity relationship, we know that A F,,= A,F,,(which must be true,

as the net heat exchange must be zero when T,= T,). So finally we have
Q.= A.F.ol' -T)

b) 1) from the result above (the filament is in radiation exchange with a single body),
we have

O: A/w'reo- (Twire4 - 7;Iassinner4)9
so per unit length

? —7* 0.002* 5.67E - 83000" - 700")=2.88kW/ m

rOU e
" )
2nA ’

b) ii) Thick walled cylinder. Thermal resistance per unit length is R, =

SO
12
2
" 27138
and the outer temperature is 639.5 K.

=0.021K AW/ m). Thus (T, — T,

nner outer

)=0.021* 2877E3=60.5K ,

b) iii) The energy leaving by radiation will be ? =r0. 0246(639.64 -293 ) =
683.9W/m, which is 683.9/2877 = 23.8% of the total.

b) iv) The Nusselt number is defined by Nu, :%; the rate of heat transfer by

convection per unit length is CTQ = h% (Te—T.).
The Reynolds number is Re, =M. Thus
Y7
Q . 2 U,DY" | 354
_=NUD_ Aouter (7:)uter_ 7:0)=0 P Pr'as_ﬂ-D(Euter_ 70-0)
/ D | U D
=(2877-683.9)
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Thus the Reynolds’ number is found from
2193.1=02Re,”° 0.71°%°0.0267(639.6— 293), from which we find that Re,=
2.48E4.

pU,D 1.25%0.024

Finally, we have
Y7, 2E-5

U, =248E4, and thus

U, =16.56 m/s.

Note that the values of Cand nin the Nusselt number correlation Nu,=C R’ Pr'®

(for cylinders in cross flow) vary considerably with the Reynolds’ number. In this
question, the choice of the appropriate correlation — which would be required in
practice, and might involve iteration — was not considered for simplicity.
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Q4 Soln

(a)

T dz 1‘ t+dt

»
»

y y=¢
A force balance on the element gives (assuming unit distance into the page):-

—zdz+ (7 + dr)dz— dpdy =0

But by definition, 7 = ,ud—u

ay
d_ du

“az My

b (1) The forces on the piston must sum to zero. The three forces are those due to
pressure, skin friction, and the piston’s mass. To determine the skin friction, we need
to integrate the last expression to get the velocity profile in the gap. Taking
(arbitrarily) the y origin as at (and of course outward normal to) the piston surface, we
have (noting that the pressure gradient in the z direction must be constant, as the gap
and flow rate is uniform, and we are neglecting hydrostatic pressure effects)

y @ =H ﬂl +C,
az ~ ay

d
§£=yu+c,y+02
y=0,u=0,..C,=0

dp
—e,u=0,.C=2%
y=¢ " 2dz

do

cu=Y(v—e)P
sopu=(y=g)

The shear stress at the piston (y = 0) is given by
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T,= ,uil = [0— i]@ . Noting that %:M , which is a negative quantity,
ay), 2)dz az h

we see that as expected the shear stress acting on the walls is in the +ve z direction for
the piston and the cylinder. The shear stress acting on the piston is thus

:f(pl_pz)

T, .
2 h

Summing the forces on the piston, we have

mg="(D~2¢)'(p - p)+7,2(D~2¢)h

Or, substituting for 7 ,and re-arranging we obtain

(,01 - pz): 7z-D(4Dn—g2g)

[(p1 — pz):%q‘zg is also acceptable as D>>¢ |
T

b (ii) The flow rate, @Q, is given by

b (ii1) Rate of energy dissipation is Qp, - pz).
This is the work that would have to be supplied by an ideal pump.
For discussion:-

- How would the results be affected if the variation in hydrostatic pressure was
significant?

- will the piston automatically be centered in the cylinder?
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Q 5 Soln

Applying continuity between 1 and 2, we have

T (2 2 T 2 T 2
u—\D* — d° )+ pv—d“=pw— D
pu” (P =)+ pv” = pw”

Dividing through by D?, and making the substitution k= d2/ D? we obtain
w= kv+(1-k)u (eq 1)
As required.

Applying Bernoulli for a streamline which passes through the annulus, and originates
far from section 1, we have

1
P= P+t (eq2)

Applying the force momentum equation between 1 and 2, we have, noting the
streamlines exiting at 2 are parallel, so p, = p,, (and omitting the common term 7 /4

, and dividing through by D?)
p;— p,= pW — pVPKk— ptF(1- k)
Eliminating p,— p, between these two expressions gives

——;pu2=pvf—pv2k—puz(1— k)

Which can be written as

2w — 2k = (1- 2k)UP (eq 3)
As required.
With k=1/2,and v=10m/s, substitution into eq 3 gives w= 10/ \/2(7.07 m/s) and
eq 1 then gives u= 14\/5— 1) (4.14 m/s).
(p, - p,)= 1/ 2pLF (from eq 2). —;plf =05"1.2" 100(@— 1)2210.3 N/m?*

[Clearly we could eliminate uor wusing eqs 1 and 3, but the algebra is tedious — for
the record, the results are

u_JoK(i-k)-2K1-k)  w_\2K(i-K)+ (2K’ ) |

v 2k? - 2k+1 v 2k? —2k+1
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For the last part, we need to apply the force-momentum equation — and we must use
the control volume shown in the figure for the whole ejector pump (why?). Far
upstream of the inlet, the velocities are so low that they can be neglected. Ambient
pressure acts on all the control volume, except inside the tube. Since we are
neglecting fluid friction, the pressure everywhere in the tube is p,. Thus the only term

in the force-momentum equation due to pressure is ( p, — p, )Z .

If the axial compression in the tube where it crosses the control volume is F, (i.e. Fis
an external force acting left to right on the control volume) then

F+(g—pa)§d2:pv|f§D2—pv2%d2 eq 4

Because far upstream of the ejector, the flow being induced has negligible velocity
where it crosses the control volume. Thus

F—10.3%0.5*0.04=1.2*50%0.04—1.2*100%0.5*0.04

- F=0.162N

And the tube is in compression.
Note that the RHS of the equation equals zero. Some attempts at this question

assumed that the momentum change was zero, and thus obtained the correct
numerical answer — but if in eq 4 we substitute from eq 3 on the RHS, we obtain

_ k)
Fi(p—-p)td = EDZ(I_zuz
+(p pa)4 P :

We see that only for k=1/2 is RHS of eq 4 equal to zero.

2011 IB paper 4 exam solutions



Q6 Soln

(a)

|

poirt oct'n:imvelocity,
it prés s

1 3 ?

IR

Four physical principles are required:-

i) Continuity - pAVis constant. [ Q.= AV, =cAv, = AV, |

il) Bernoulli’s equation applies between 1 and 3 [ p, +% pvlzz P, +% pv32]

ii1) Streamlines straight at 3 — or outside the jet of low velocity — therefore
pressure constant across plane 3

iv) The force momentum equation applied to the control containing the whole
flow between 3 and 2 will allow determination of the “pressure recovery” as the flow

mixes between 3 and 2. [ p, A— p, A= v, —rmv;] (No body forces as axial distance
too small for significant wall friction effects.)

(b) (1) The minimum pump work for a given flow rate must be associated with the
minimum throttling losses. The pressure at stations 1 and 2 must be greater than that
at station 3, due to friction, so in order to get equal flows in each delivery pipe, the

valve V3 can, and should, be fully open (a3= 1) .

For pipe carrying a flow of Q, the pipe dynamic head is given by

1 1 (4QY 8p
Epvzzzp(ﬂdzj =n@ where n=72'2d4 .

. . L1
And the stagnation pressure drop due to friction 1S AD, 4ion=4C; a2 pV =kn@ ,

where k=4c, A
d
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As there is no pressure loss across valve 3, we can determine the pressure drop from
inlet to the open end, Ej, since we know all the flows. The stagnation pressure losses
due to friction in each section are as shown on the figure.

E, E, E;

kr(Q/3)’

Reseivoir Pump

\ —_— V1 V2
k@ 1 KRQ 2 k) 3

The stagnation pressure entry to the pump is P,y because there are no losses in the

entry pipe (the static pressure will be p, ...~ NQ’). Noting that the stagnation

pressure is constant across all the junctions and bends, we see that the difference

between the stagnation pressure after the pump 0, ,penit A¢ punp> @nd the stagnation

pressure at Es, P, it I'(Q/ 3)2 , 1s the sum of the stagnation pressure losses due to

friction in the pipes between these locations, which are shown on the figure. Thus we
can write

(Bartrent+ A, )~ P+ QY3 )= 2k QY3 + kr(2Q)3F + k@ or

1+15k
APy, purp = an( j

(b), (ii) For this part, we need to include the stagnation pressure losses across the
valves. The valves each pass a flow of Q/3, so the valve pressure drop will be

1 (Q 4 Y(1-aY Ql-a)Y
Apo,or;ﬁoe=5/0(§ ﬂdzj (7} ﬂ'{g%}

Following the same method as in part (b) (i), we can thus write for the flow from the
pump to E;

Dot AD —p.+Q32:k92+ QM +kn@
( ambient O,punp) ( ambient n( /)) 3 3

a,

2
o e (]

2

which when equated to the expression for Ap, ,,,,,, in part (b),(i), and we find
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a, = (1 + \/S_I()_l

For the flow to E, we have

o] S ]

a,

And once again substituting for Ap, ,,,,from part (b) (i), we obtain

a2=(1+\/7(>1

Note that as kmust be positive, the ¢, &, must be less than unity. Also we see that
o,> a, as expected.

(b) (iii) The resistance to flow is proportional to &, so if the pump pressure rise
increases by 50%, there will be a 22.5% increase in flow (\/ 1.5= 1.25) . The relative

flow rates remain the same since all losses scale as QF.
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