
IB Paper 6, 2011: Solutions

SECTION A

1. Physical system transfer functions & reposnses

(a)(i) The dynamics equations can be written

τbθ̇b =
q̄i − q̄o

h
+ (θw − θb)

τwθ̇w = θb − θw

where
τb =

mbca
h

= 150s τw =
mwcw
h

= 700s

Taking Laplace transforms

θ̄b =
1

sτb + 1

(

θ̄w +
q̄i − q̄o

h

)

θ̄w =
1

sτw + 1
θ̄b

Hence

[(sτb + 1) (sτw + 1)− 1] θ̄b =
sτw + 1

h
(q̄i − q̄o)

Rearranging:

θ̄b =
(sτw + 1)

s (τbτws+ τb + τw)

(q̄i − q̄o)

h

θ̄w =
1

s (τbτws+ τb + τw)

(q̄i − q̄o)

h

For the case that
q̄i = k1

(

θ̄d − θ̄w
)

Then block-diagram can be drawn from the initial Laplace transforms of the dynamics
showing the inputs of blocks as θ̄d and outputs as θ̄b, θ̄w, with q̄i defined as above.

The corresponding CLTF is [7]

θ̄w =
k1/h

s (τbτws+ τb + τw) + k1/h

(

θ̄d − q̄o/k1
)
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(a)(ii) From the denominator of the CLTF

ωn
2 =

k1/h

τbτw
2ζωn =

τb + τw
τbτw

Since ζ = 1/
√
2 then

2
k1/h

τbτw
=

(

τb + τw
τbτw

)2
k1
h

=
1

2
.

172

14× 3

(dividing top and bottom by 502), and hence k1/h = 289/84 and k1 = 10.3.

Steady-state error = qo/k1 (either from final value theorem or noting that at steady-
state input and output power is equal). Hence error is 4.8◦C. [5]

(b) In this case the feedback is from the temperature of the boiler. So that

q̄i = k2
(

θ̄d − θ̄b
)

Substituting this in the expression for θ̄b and then keeping the final output as θ̄w
gives as CLTF

θ̄w =
k2/h

s (τbτws+ τb + τw) + k2/h (1 + sτw)

(

θ̄d − q̄o/k2
)

Thus to halve the steady-state error need to set k2 = 2k1 = 20.6.

To find closed loop poles solve

150× 700s2 + (150 + 700× (1 + k2/h)) s+ k2/h = 0

Poles are both real, and one is very slow. [5]

(c) Increasing the gain in part (b) makes the steady state error small but at the cost
of a very sluggish response to a step change in demanded temperature. Whereas in
part (a) the response is much faster but the steady state error is larger and there is
some oscillatory response and overshoot in the step response. [3]
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2. Bode plots

(a) The Bode plot shows the magnitude (in dB) and phase (in degrees) of the steady
state frequency response for a range of frequencies for the open loop system. To
construct, need a sinusoidal input to the open loop system, when at steady state,
measure the magnitude and phase. This should be done for a range of frequencies
(often with logarithmic spacing) over the range of interest. [3]

(b)(i) First find the value of n. From the gradient at low frequency, and the low
frequency phase of ≈ −90◦, itis clear that n = 1.
For α examine the frequency that the phase is −45◦ (+45◦ due to the numerator
term. This happens at ω = 0.2 and hence α = 0.2.
For γ, look at the resonant frequency. It is a fairly sharp peak at ω = 2, hence
γ = 22 = 4.
For β examine the height of the resonant peak. Although difficult to measure accu-
rately from the plot it is ≈= 14dB, which is a gain of 5. This is equal to 1

2ζ
and

hence ζ = 0.1 and β = 2ζωn = 0.4.
Finally for A, need to match the overall gain. At ω = 0.01 the gain is ≈ 56dB ≈ 600.
Hence

Aα

0.01× 4
= 600

A = 120

Note that a reasonable range of values for A is acceptable. [6]

(b)(ii) It can be seen that the phase margin is very small, but the phase is slightly
less than −180◦ when the magnitude is equal to 1. Hence the closed loop system is
stable, but the phase margin is about 1◦. [2]

(c) At ω = 4 from the plot we have for |G(j4)| ≈ 20dB = 10. To make |K(jω)G(jω)| ≈
1 when ω = 4, then the magnitude of the compensator response = 0.1. Taking the
squared magnitude value with ω = 4: [3]

ω2 + 4

36(ω2 + B2)
= 0.01

16 + B2 =
2000

36
B = 6.29

(d) We already know that the phase margin of the compensated system will be at
ω = 4. The phase of the compensator at this frequency is

tan−1 ω

2
− tan−1 ωB = 31◦

Hence the overall phase margin is orginal phase difference to 180◦ at ω = 4 added to
the compensator phase. The total new phase margin is 33.5◦. The combined Bode
plot of is should be drawn on the additional sheet: modified loop shown below. The
modified loop has lower gain but will be much less oscillatory step response. [6]
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3. Nyquist Diagrams

(a) The closed-loop system is stable if and only if the complete Nyquist diagram of
the open loop system K(s)G(s) has no encirclements of the ‘-1’ point . The Nyquist
diagram is a plot of the open loop steady state frequency response of the system in
the complex plane with the frequency varying along the plot. [4]

(b)(i) if |KG(jω)| > 1 for all ω < 2.

At ω = 2

|KG(j2)| =
1√

1 + 22

=
1√
5

Hence K =
√
5. [4]

(b)(ii)
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For stability considerations, examine the case when the magnitude is equal to unity
and the phase angle is −π. With K =

√
5, then unit magnitude is at ω = 2. [6]

−2τcrit − tan−1 2 = −π

τcrit = 1.017

(b)(iii) Now the gain margin is equal to 2. Hence the new value of K = K ′

K ′ =

√
5

2

For phase margin, find the frequency at which magnitude is unity, ωpm

√
5

2
√

ωpm
2 + 1

= 1

ωpm
2 + 1 =

5

4

ωpm =
1

2

At this frequency ωpm, the phase angle is

−1.017

2
− tan−1 1

2
= −55.7◦

Hence the phase margin is 180◦ − 55.7◦ = 124.3◦.

To find out where the closed loop response has unit magnitude need

ℜ{K ′G(jω)} = −0.5

For the case considered here, since the gain margin is equal to 2, then this occurs at
ω = 2. The real part of the frequency response is

√
5

2 (1 + ω2))
(cosωτ − ω sinωτ)

To find the other value when this is equal to -0.5 we need to use an iterative/trial and
error solution and get ω ≈ 1.5. Hence the closed loop frequency response is greater
than 1 between ≈ 1.5 and 2. [6]
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SECTION B

4. Fourier Transform

(a) This the familiar result about the Fourier transform of the rectangle pulse, but
here stated in its dual form.

It is easiest to work back from the Fourier transform:

x(t) =
1

2π

∫

X(ω) exp(+jωt)dω

=
1

2π

∫ +Ω

−Ω

1. exp(+jωt)dω

=
1

2π

1

jt
[exp(+jωt)]Ω

−Ω

=
1

2π

1

jt
2j sin(Ωt)

=
sin(Ωt)

πt

as required. [5]

Examiner’s comment: Some candidates used the data book and duality result to get
the answer. Generally very well answered.

(b) Now, use the result that convolution in the time domain is multiplication in the
frequency domain. Then we have that

FT{f1(t) ∗ f2(t)} = F1(ω)F2(ω) =

{

1, |ω| < min(Ω1,Ω2)

0, Otherwise

and hence we have the FT of the original sinc-type function with Ω3 = min(Ω1,Ω2).
[5]

Examiner’s comment: Well answered by most. A few were confused about Ω3 and
gave some silly answers:

√
Ω1Ω2 was a common guess.

(c) Now use the standard frequency response result that to find the FT of the filter
output multiply the FT of the input by the filter frequency response.

This output FT can be split up into two parts: a rectangle pulse of width Ω and
amplitude −j, shifted to the right by Ω/2, and a similar rectangle pulse having
amplitude j, shifted to the left by Ω/2.

We can find the inverse FT of this summation using the result from part (a) and the
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frequency shifting theorem:

y(t) = −j exp(jΩ/2t)
sin(Ωt/2)

πt
+ j exp(−jΩ/2)

sin(Ωt/2)

πt

= 2 sin(Ω/2t)
sin(Ωt/2)

πt

=
(1− cos(Ωt)

πt

as required. [6]

Examiner’s comment: Again, well answered by many. Most people worked out the
inverse FT of Y (ω) directly, which is probably simpler than the above solution.

(d) Denote the final output as z(t), then:

Z(ω) = H(ω)Y (ω)

=

{

−1, |ω| < Ω

0, Otherwise

and therefore by inspection from the result of part a),

z(t) = −x(t)

i.e. negative the original input function. This result is general for all signals with
zero mean, i.e. no δ-functions at ω = 0 and H(ω)2 = −1 for all frequencies except
ω = 0. [4]

Examiner’s comment: well answered by a small minority of candidates. The subtlety
about zero-mean signals was not required in the exam. Note though that under
exam pressure most candidates were unable to correctly obtain H(ω)2, thinking for
example that (−j)2 = 1, which is a basic error that cost many number of candidates
marks.
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5. DFT

(a) The steps are as in the lecture notes.

Start off with the sampled signal

xs(t) =
∑

n

x(nT )δ(t− nT )

Take its FT:

Xs(ω) =

∫

∑

n

x(nT )δ(t− nT ) exp(−jωt)dt =
∞
∑

p=−∞

x(pT ) e−jωpT

which is the Discrete Time Fourier Transform (DTFT). This expresses the spectrum
of a sampled signal in terms of the signal samples but is not computable on a digital
computer for two reasons:

• The frequency variable ω is continuous.

• The summation involves an infinite number of samples

These problems can be overcome by the following steps:

1. evaluating the DTFT at a finite collection of discrete frequencies

2. Performing the summation over a finite number of data points.

The discrete set of frequencies chosen is arbitrary. However, since the DTFT is
periodic we generally choose a uniformly spaced grid of N frequencies covering the
range ωT = 0 → 2π. If the summation is then truncated to just N data points, we
get the DFT:

Gp = G(ej
2π

N
p) =

N−1
∑

n=0

gn e
−j 2π

N
np

The frequency of component p is obtained by uniformly splitting the Nyquist sam-
pling frequency into N equal parts, 1/(NT ). Then the pth component is obtained as
p/(NT )Hz. [5]

Examiner’s comment: This was very poorly understood and answered. Most candi-
dates either did not know the material, or did not understand what was being asked
for.
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(b)

XN−p =
N−1
∑

n=0

xn exp(−jn(N − p)2π/N)

=
N−1
∑

n=0

xn exp(jnp2π/N) exp(−jnN2π/N)

=
N−1
∑

n=0

xn exp(jnp2π/N) [since exp(−jnN2π/N) = 1]

= X∗

p [(since)(
∑

complex)∗ =
∑

complex∗]

as required. [2]

(c)(i) The Nyquist sampling theorem states that sampling must be at a frequency at
least double that of the maximum frequency component of the signal, i.e. 20Hz. Al-
lowing say 10% for filter transition bands (other reasonable percentages acceptable),
we should go for 22Hz sampling. [2]

(c)(ii) Taking the maximum amplitude as 1, the average energy of the sinusoid is 1/2.
The quantisation noise is δ2/12, where δ is the ADC step size. 30dB corresponds to
an energy ratio of 1000, since 10log10(1000) = 30. Hence,

SNR =
0.5

δ2/12
= 1000, δ =

√
0.006 = 0.0775

Then, only 2/0.0775=26 (approximately) levels are required. But, 25 = 32, so hence
a 5-bit ADC may be used to achieve the desired SNR. [4]

(c)(iii) Case 1:
sin(0.5πn) = [0, 1, 0, −1]

Plugging into the DFT formula we get:

[0, −2 i, 0, 2i]

This is as expected, since component p = 1 in the DFT corresponds exactly to
frequency ω = 2π/(NT ) = 2π/0.04 = π/0.02, i.e. exactly the frequency of the
sine-wave. Also, we expect the p = 3 component to be the conjugate of the p = 1
component since Xp = X∗

N−p, which it is.

Case 2:

sin(0.25πn) = [0,
√
2, 1.0000,

√
2]

Plugging into the DFT formula we get:

[2.4142, −1.0000, −0.4142, −1.0000− 0.0000i]
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This has the expected conjugacy properties, as before, but we have a ‘smearing’
of frequency components across all p. This is because ω lies midway between two
frequency ‘bins’, and hence we do not get an accurate frequency estimation. [There
is a lot more that could be said here about resolution and smearing, etc, but this
would be beyond 1B level]. [7]
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6. Modulation of Wireless Signals

(a) Frequency division multiple access - FDMA - multiplexes users in frequency. Each
user is assigned a bandwidth and it is modulated to a carrier such that there are no
overlaps between spectra of adjacent users.

Time division multiple access - TDMA - multiplexes the users in the time domain.
Each used is assigned a given time slot.

Code division multiple access - CDMA - multiplexes the users assigning different
signatures to each user. Each user transmits the whole bandwidth over the whole
duration of the frame. Signatures should be orthogonal to enable recovery of trans-
mitted data from each user. [5]

Examiner’s comment: very well known piece of bookwork.

(b) The spectrum of the rectangle pulse of height +5V is (from data book):

X(f) = 5Tsinc(πfT )

Therefore, from result in lecture notes, spectrum of ASK signal is

|S|2 = 0.25(|X(f−fc)|2+|X(f+fc)|2) = 6.25T 2(sinc2(π(f−fc)T )+sinc2(π(f+fc)T ))

where T = 1/100000 is the bit period.

Nulls occur in X(f) when πfT = nπ, n 6= 0, i.e. at frequencies f = n/T ). Hence
nulls in S occur at frequencies ±fc + 100000n, where n = ±1,±2, .... Central lobes
occur at ±fc and sideobes at ±fc ± (75000 + 100000n), where n = 0, 1, ..., (see
diagram). [6]
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Examiners comment: Many candidates plotted the power spectrum before modula-
tion. Most were able to determine the position of the nulls.

(c) Databook gives channel capacity as

Cu = Bu log2(1 + Pu/N)

Now, for each user, Bu = B/K for FDMA. The noise power is N = N0Bu = N0B/K,
since N0 is the noise power spectral density. The power for each user is split equally,
Pu = P/K. Then:

Cu = B/K log2(1 + P/(N0B))

How to sketch this? A few illustrative points will do, but noting for the case of very
small B that since limx→0x ln(1+1/x) = 0 the sketch starts at (0,0). Considering B
increasing (and since there are no turning points), as B gets large we have

log2(1 + P/(N0B)) ≈ log2(e)
P

N0B

(using first order Taylor expansion of ln(1 + x) and log2(x) = log2(e) ln x)

Hence overall, as B → ∞
Cu = log2(e)

P

KN0

i.e it tends to a constant, see figure below: [4]

Examiner’s comment:

Most people knew or could find the basic capacity formula. However, there was a lack
of understanding about the noise power spectral density. Most people used N = N0

instead of N = N0Bu, completely changing the form of the result. Intuitively, the
noise must increase as the bandwidth of the channel increases. Only a few people
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could then sketch the general form of the curve: a ‘first principles’ analysis was not
really necessary (and in fact no single candidate achieved this), but plotting a few
points to get the idea should have been feasible.

(d)(i) First null beyond first sidelobe is 200kHz from central lobe, see figure from part
(b). Hence bandwidth of each user is 2× 200 = 400kHz. Therefore max number of
users is (200− 100)/0.4 = 250 [3]

(d)(ii) Spacing between spectrum nulls is 100kHz. Hence there is an additional
100kHz per channel and the number of channels reduces to 200− 100/0.5 = 200. [2]

Examiner’s comment: Generally very successfully answered.
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