
IB Paper 6, 2012: Solutions

SECTION A

1. System response and steady-state errors

(a) First

ȳ(s) =
1

s(s+ 3)

(
d̄(s) +K(r̄(s)− ȳ(s))

)

ȳ(s) =
d̄(s) +Kr̄(s)

s(s+ 3) +K

Set either d̄(s) = 0 or r̄(s) = 0 to get transfer functions

ȳ(s)

r̄(s)
=

K

s2 + 3s+K

ȳ(s)

d̄(s)
=

1

s2 + 3s+K

[4]

(b) Compare denominator of the terms in the closed loop transfer functions to

s2 + 2cωns+ ωn
2

Hence ωn
2 = K, 2cωn = 3

c =
1.5√
K

[3]

(c) In each of these use the final value theorem to determine the final value of the
error.

ȳ(s)− r̄(s) =
1

s2 + 3s+K
d̄(s)− s2 + 3s

s2 + 3s+K
r̄(s)

Now we want lims→0 s (ȳ(s)− r̄(s)) for each case.

(c)(i) r̄(s) = 1/s, d̄(s) = 0. Final value of error = 0. [2]

(c)(ii) r̄(s) = 0, d̄(s) = 1/s. Final value of error = 1
K

. [2]

(c)(iii)r̄(s) = 0, d̄(s) = 1
s+2

. Final value of error = 0. [2]
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(c)(iv) r̄(s) = 1
s2
, d̄(s) = 0.

lim
s→0

s (ȳ(s)− r̄(s)) = lim
s→0

s

(
− s2 + 3s

s2 + 3s+K

1

s2

)

=
−3

K

[3]

(d) If the proportional controller is replaced by a PI controller with transfer function

KP +
KI

s
=
KP s+KI

s

In this case the transfer function becomes

ȳ(s)

d̄(s)
=

s

s3 + 3s2 +KP s+KI

This means with a steady state disturbance input as in (c)(ii), the steady-state error
is zero.

Also note that for the case in (c)(iv) now becomes

lim
s→0

sȳ(s)− r̄(s) = lim
s→0

s

(
− s3 + 3s2

s3 + 3s2 +KP s+KI

1

s2

)

= 0

Hence there would be no errors in tracking a ramp also. [4]
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2. Nyquist Diagrams

(a) The closed-loop system is stable if and only if the complete Nyquist diagram of
the open loop system K(s)G(s) has no encirclements of the ‘-1’ point . The Nyquist
diagram is a plot of the open loop steady state frequency response of the system in
the complex plane with the frequency varying along the plot. [3]

(b) To construct the Nyquist diagram set s = jω and measure G(jω).

G((jω) =
1

jω(2− ω2 + 4jω)

As ω →∞, the | · | → 0 and phase to −3π
2

.
As ω → 0, | · | → ∞ and phase to −π

2
.

In fact as can be seen from a Taylor expansion, as G(jω → 0) → −1 (which is the
required asymptote). The plot crosses the negative real axis when the imaginary part
is zero i.e. at ω =

√
2.

Hence the Nyquist plot can be drawn:
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The magnitude of the closed-loop frequency response is

|K.G(jω)|
|1 + K.G(jω)|

From the Nyquist plot, for K = 1 the numerator is the distance from the origin to
the point on G(jω) curve at a particular frequency. The denominator is the distance
from (-1,0) to the point on the G(jω) curve. [7]
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(c) Gain margin is simply the reciprocal of the intersection with the negative real
axis. Since ω =

√
2, G(jω) = 1/8, the gain margin is equal to 8. [2]

(d) The jω term on the denominator gives a phase of −90◦. If the phase margin is
45◦ then at the phase margin ω = ωc and

− tan−1 4ωc
2− ωc2

= −45◦

4ωc
2− ωc2

= 1

ωc = −2±
√

6

ωc =
√

6− 2

= 0.449

The magnitude is

|G(jω)| = 1√
16ω4 + (2ω − ω3)2

However at the given phase angle we know that the real and imaginary parts of the
denominator are equal hence:

|G(jωc)| =
1√

2× 16ωc4

=
1

4
√

2ωc2

= 0.875

Hence the value of K needed to scale |G(jωc)| to unit magnitude is 1/0.875 = 1.143. [4]

The magnitude of the closed loop frequency response at the phase margin doesn’t
depend on K, but by simple trigonometry

=
1

2 sin 22.5◦
= 1.306

[2]

(e) If the peak magnitude of the closed loop frequency response is much greater than
unity, the system will have a low phase margin. The step response will be oscillatory.
Both of these will be undesirable. [2]
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3. Bode Plots

(a) For an asymptotically stable open-loop system: the phase margin (if it exists) is
the increase in (negative) phase before the system becomes unstable at constant gain;
the gain margin (if it exists) is the factor that the gain must increase at constant
phase before the system becomes unstable (measured when phase angle = −180◦). [4]

(b) Note that we have a gain (K(s) = 2 or 6dB. Hence the response given in Fig
4 for G(s) alone is increased by 6dB. Hence we need to find the difference between
-6dB and the plot when the phase plot is at −180◦. This is about 5dB occurring at
a frequency of about 65 rad/s. For the PM, find when the gain plot including the
K = 2 is at 0dB, and find the difference between the plot and −180◦. Hence look
at where the plot of G(s) crosses the -6dB line, and look for the phase difference
between the actual phase and −180◦. This occurs at about 50 rad/s and the phase
is about −165◦, so the phase margin is about 15◦ (accurately 17◦). [5]

(c)(i) First draw the plot for the compensator. It might be helpful to rearrange the
response for the compensator as

K(jω) =
20(30 + jω)

300 + jω

=
2(1 + jω/30)

1 + jω/300

Hence the compensator has the same DC gain as in part (b). However we now have
a breakpoint frequency of 30 rad/s on the numerator increasing at 20dB/decade.
The denominator breakpoint is at 300 rad/s and cancels the numerator after that
frequency to have an overall increase in gain at high frequency of 20dB. The effect
on phase will be over a wide range of frequencies (approx 3 rad/s to 3000 rad/s)
where it will give a positive phase. Need to compute some sample points of the phase
advance due to the compensator in order to yield an accurate plot.

For instance at ω = 30 phase advance is tan−11− tan−10.1 = 39◦. At ω = 100 phase
advance is tan−110/3− tan−11/3 = 54◦. etc. Combining these yields a Bode plot for
the original (red line, lower line in phase plot), compensator alone (yellow line, upper
line in phase plot) and compensated loop (green line, middle line in phase plot): see
Fig. 1. [6]

(c)(ii) Measuring from the plot of the compensated loop on the revised yields a phase
margin of about 45◦ (at 80rad/s) (accurately 43◦ at 81rad/s) and a gain margin of
10-15dB at about 180 rad/s (accurately 12.5dB (at 184 rad/s). [2]

(c)(iii) Note that the DC gain are the same in both cases (& hence the steady state
error). However the compensated look is oscillatory (the uncompensated loop has a
small GM and PM and is fairly close to instability), and also the compensated loop
has a greater bandwidth. [3]
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Figure 1: Bode plots for the original loop, compensator and compensated loop, for use
with phase margin and gain margin calculations
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SECTION B

4. Fourier Transforms: shift theorem & convolution

(a) The IFT is written as:

f(t) =
1

2π

∫ +∞

−∞
F (ω)ejωtdω

Thus, replacing t by t− t0 in this equation gives;

f(t− t0) =
1

2π

∫ +∞

−∞
F (ω)ejω(t−t0)dω

=
1

2π

∫ +∞

−∞
{F (ω)e−jωt0}ejωtdω

Which tells us that f(t− to) and e−jωt0F (ω) are FT pairs. [3]

(b) Write sin(aω) as 1
2j
{ejaω−e−jaω}, so that we want to find the IFT of 1

2j
{F (ω)ejaω−

F (ω)e−jaω}. Using the result of part(a), this straightforwardly gives [4]

1

2j
{f(t+ a)− f(t− a)}

(c) The derivative of the Gaussian g(t) is given by

g′(t) = −2a2te−a
2t2 ≡ −2a2tg(t)

and the derivative of this is given by

g′′(t) = −2a2{1− 2a2t2}g(t)

Thus, g′(0) = 0, g′(t) → 0 as t → ±∞, and g′(t) is positive for t < 0 and negative
for t > 0. From g′′(t) we see that there are max and min at t = ±1/(

√
2a).

This is shown in figure 2 for a = 1: [5]
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Figure 1: Derivative of a Gaussian

(d) We now convolve this derivative of a Gaussian with the pulse p(x). Since we
know that convolution in the spatial domain is equivalent to multiplication in the
Fourier domain, we have that

H(!) = FT (g0(x))FT (p(x))

But we also know that if F (!) is the FT of f(x), then j!F (!) is the FT of f 0(x).
Therefore the FT of g0(x) is

FT (g0(x)) = j!G(!) =
j!

p
⇡

a
e�!2/(4a2)

and from the Databook we know that P (!) is given by

P (!) = cbsinc
!b

2

Thus, H(!) can be written as {cbsinc!b
2
}{j!G(!)}, which is

H(!) = cb
sin(!b/2)

!b/2
j!G(!) = 2jc sin

!b

2
G(!)

Using the result of part b), we know that the IFT of H(!) can be written as

IFT (H(!)) = h(x) =
2jc

2j
{g(x + b/2) � g(x � b/2)} = c{g(x + b/2) � g(x � b/2)}

3

Figure 2: Derivative of a Gaussian

(d) We now convolve this derivative of a Gaussian with the pulse p(t). Since we know
that convolution in the spatial domain is equivalent to multiplication in the Fourier
domain, we have that

H(ω) = FT (g′(t))FT (p(t))

(i) But we also know that if F (ω) is the FT of f(t), then jωF (ω) is the FT of f ′(t).
Therefore the FT of g′(t) is

FT (g′(t)) = jωG(ω) =
jω
√
π

a
e−ω

2/(4a2)

and from the Databook we know that P (ω) is given by

P (ω) = cbsinc
ωb

2

Thus, H(ω) can be written as {cbsincωb
2
}{jωG(ω)}, which is

H(ω) = cb
sin(ωb/2)

ωb/2
jωG(ω) = 2jc sin

ωb

2
G(ω)

[4]

(ii) Using the result of part b), we know that the IFT of H(ω) can be written as

IFT (H(ω)) = h(t) =
2jc

2j
{g(t+ b/2)− g(t− b/2)} = c{g(t+ b/2)− g(t− b/2)}
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Figure 3: Value of convolution if b� 1/a [c = 0.5, b = 2, a = 10]

ie the difference of two gaussians centred on ±b/2. If b � 1/a then, since
1/a determines the width of the gaussian (ie σ ∼ 1/a) then we can see that
the convolution will approx be two gaussians which interfere with each other
minimally, see figure 3. If b � 1/a then the width of our pulse is very small
and we approximately have a delta function, which means that the convolution
will simply give the derivative of a gaussian as shown earlier in figure 2. We
therefore see that convolving with a gaussian derivative (of appropriate width)
can be used as an edge detector (not necessary in the answer). [4]
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5. DFT and signal quantisation

(a) If we represent the sampled version of x(t) as xs(t) where

xs(t) =
∞∑

n=−∞
x(nT )δ(t− nT )

= x(t)
∞∑

n=−∞
δ(t− nT ) = x(t) δp(t)

with fs = 1/T , we can write the train of delta functions δp(t) as a Fourier series
(since it is obviously periodic) as follows:

δp(t) =
∞∑

n=−∞

1

T
ejnω0t

with ω0 = 2π/T .

Therefore Xs(ω) is given by the FT of 1
T

∑∞
n=−∞ x(t)ejnω0t. Hence, by the shift

theorem, we can write this as

Xs(ω) =
1

T

∞∑

n=−∞
X(ω − nω0)

ie the FT of the sampled signal is the FT of the original signal repeated at intervals
of the sampling frequency.

Thus, provided the width of the FT X(ω) is less than half of the sampling frequency,
we do not get overlaps in the Fourier domain and the original FT can be filtered
and inverted to obtain a perfect reconstruction of the original signal. If we do get
overlap of the repeated FTs, we observe artefacts known as aliasing [note, sometimes
the whole process of repeating the spectrum is referred to as aliasing]. Thus, the
condition for exact recovery is that fs > 2fmax. [6]
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(b) The formula for the inverse DFT is

xn =
1

N

N−1∑

m=0

Xmejnm2π/N n = 0, .., N − 1

(i) In the case of the DFT sequence [0, 1, 0, 1], N = 4 and so our original signal
samples {xn} are given by:

x0 =
1

4
{0 + 1 + 0 + 1} =

1

2

x1 =
1

4
{0 + 1ej2π/4 + 0 + 1ej3×2π/4} =

1

4
{ejπ/2 + ej3π/2} =

1

4
{j − j} = 0

x2 =
1

4
{0 + 1ej2π/2 + 0 + 1ej3×2π/2} =

1

4
{ejπ + ej3π} =

1

4
{−1− 1} = −1

2

x3 =
1

4
{0 + 1ej3π/2 + 0 + 1ej3×3π/2} =

1

4
{ej3π/2 + ej9π/2} =

1

4
{−j + j} = 0

Therefore {xn} = [ 1/2, 0, −1/2, 0 ]. [4]

(ii) If we sample at 4Hz the kth frequency component in the DFT is given by k/(NT )
where k = 0, 1, 2 and N = 4, T = 1/4, ie kHz – note that we can only pick out
frequencies at half of the sampling frequency (recall that XN−m = X∗m). Thus
the non-zero components in the DFT represent a frequency of 1Hz. Given this
information about the spectrum of the signal, we can infer that the simplest
form of the signal (ie no aliasing) is

x(t) = a1 sin 2πt or a1 cos 2πt

Taking cos, x0 = x(0) = a1, x1 = x(1/4) = 0, x2 = x(2/4) = −a1, x3 =
x(3/4) = 0, which agrees with inverse DFT if a1 = 1/2, ie x(t) = 0.5 cos 2πt. [4]

(c) If we sample a signal with 3kHz bandwidth, our sampling frequency must be
greater than or equal to 6kHz to prevent aliasing, call this sampling frequency fs. If
we use 2N quantisation levels, the number of bits per second that we need to transmit
is fs ×N . Thus, if the maximum transmission rate is 64kbits per sec, we have that

fsN ≤ 64000
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So that N ≤ 64000/fs. Thus, N is maximised when fs is minimised and we know
that the minimum value of fs is 6kHz, therefore N ≤ 64000/6000 and the maximum
number of levels we can use is 210 = 1024.

We can compute the quantisation noise by finding the expected value of the squared
error over an quantisation interval – if the step size is ∆, it is not hard to show (see
notes) that the RMS noise is given by ∆/

√
12, if we assume that the real signal is

equally likely to lie anywhere in the interval. Thus, for an N -bit quantiser with 2N

levels, assuming our range is from −V to +V , the step is given by

∆ =
2V

2N
= 21−NV

Therefore the SNR is given by the square of the RMS signal over the square of the
RMS noise, ie

SNR = (V 2/2)/(∆2/12) = 6V 2/∆2 = 6V 2/(22−2NV 2) = 3× 22N−1

In dB, this is 10 log10(3× 22N−1) which is

= 10 log10(3/2) + 20N log10 2 = 1.76 + 6.02N

[See Databook!].

So, the SNR in this case is 1.76 + 60.2 = 61.96dB. [6]
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6. Modulation (analogue & digital) and PSK

(a) This first part is basically bookwork. Some summarised version of the notes is
expected, which includes the following key points:

Modulation is the process of shaping one or more parameters of a carrier wave with
the information signal x(t). The carrier wave will be tuned (in terms of frequency,
bandwidth etc.) to the channel and the information signal will be extracted at the
receiver via demodulation. The parameters of the carrier wave that are shaped are
amplitude, phase and frequency. This is necessary in general as the medium may not
be able to transport the information in its raw form – reasons for this could be; size
of antennae required, sharing of medium with other users, propagation properties as
a function of signal frequency.

In amplitude modulation (AM) of analogue signals, the amplitude of the carrier wave,
where the carrier is given by a0 cos(2πfct), is shaped such that the AM modulated
signal, sAM(t), is given by

sAM(t) = [a0 + x(t)] cos(2πfct)

mA = maxtx(t)/a0 is known as the modulation index and is normally chosen to be
less than 1 to enable simple demodulation.

In phase modulation (PM) of analogue signals, the instantaneous phase of the carrier
wave is shaped such that the PM modulated signal, sPM(t), is given by

sPM(t) = a0 cos(2πfct+ φ∆x(t))

where φ∆ is known as the phase deviation. Analogue PM is not used widely in
practice, mainly because it is harder to demodulate. However, PM can be effectively
encompassed in a discussion of FM – see below.

In frequency modulation (FM) of analogue signals, the instantaneous frequency of
the carrier wave is shaped such that the FM modulated signal, sFM(t), is given by
sFM(t) = ao cos(2πfi(t)) where

fi(t) = fc + kfx(t)

This can be integrated to give an instantaneous phase, so that we can write sFM(t)
as

sFM(t) = a0 cos

(
2πfct+ 2πkf

∫ t

0

x(τ)dτ

)

FM is a non-linear modulation technique that distorts the signal and spreads it over
a wider frequency bandwith than that of the original signal. This leads to FM being
more robust to noise than AM. [5]
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(b) When our information is digital we employ digital modulation techniques – again
this is bookwork, and the following main points should be covered (noting that we
are only covering the binary case):

The digital counterpart of analogue AM is amplitude shift keying (ASK, in this case
BASK). Here the carrier signal is altered according to the following rule:

sASK(t) =

{
a cos(2πfct) for information bit=1
0 for information bit=0

The digital counterpart of analogue PM is phase shift keying (in this case BPSK).
Here the carrier signal is altered according to the following rule:

sPSK(t) =

{
a cos(2πfct) for information bit=1
a cos(2πfct+ π) for information bit=0

The digital counterpart of analogue FM is frequency shift keying (in this case BFSK).
Here the carrier signal is altered according to the following rule:

sFSK(t) =

{
a cos(2πf 1

c t) for information bit=1
a cos(2πf 2

c t) for information bit=0

So that a change of bit value causes a flip between carrier frequencies. [4]

(c)(i) In a pulse amplitude modulation (PAM) scheme the pulse p(t) must satisfy the
following conditions:

p(t = 0) = 1 and p(t = ±nT ) = 0, n = 1, 2, 3...

where T is the symbol period.

If p(t) is a unit amplitude rectangular pulse of width T the result of applying PAM
to the signal [−A,A,A,A,−A,A,−A,−A,A,A] is shown in figure 4 [3]

Figure 3: PAM signal

Figure 4: Transmitted PSK signal

Pe = p(X̂ = +A|X = �A)p(X = �A) + p(X̂ = �A|X = +A)p(X = +A)

where X̂ is our estimate of X.

Therefore

Pe =
1

2

n
p(X̂ = +A|X = �A) + p(X̂ = �A|X = +A)

o

as both +A and �A are equally likely. If Y is our observation the above can be
written as

Pe =
1

2
{p(Y > 0|X = �A) + p(Y < 0|X = +A)}

If Y = X + Z where Z is the noise and is a zero mean Gaussian random variable
with variance �2, the above condition reduces to

Pe =
1

2
{p(Z > A) + p(Z < �A)}

Since Z/� ⇠ N(0, 1) we can write this as
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Figure 4: PAM signal
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(c)(ii) The binary signal above is now transmitted using PSK with fc = 1/T –
this means that the phase of the carrier will be shifted at every symbol, with the
transmitted signal shown in figure 5 (note, OK to also have the negative of plot
shown in figure 5) [3]

Figure 3: PAM signal

Figure 4: Transmitted PSK signal
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Pe =
1

2
{p(Z > A) + p(Z < �A)}

Since Z/� ⇠ N(0, 1) we can write this as
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Figure 5: Transmitted PSK signal

(c)(iii) The probability of an error occurring is, Pe, where

Pe = p(X̂ = +A|X = −A)p(X = −A) + p(X̂ = −A|X = +A)p(X = +A)

where X̂ is our estimate of X.

Therefore

Pe =
1

2

{
p(X̂ = +A|X = −A) + p(X̂ = −A|X = +A)

}

as both +A and −A are equally likely. If Y is our observation the above can be
written as

Pe =
1

2
{p(Y > 0|X = −A) + p(Y < 0|X = +A)}

If Y = X + Z where Z is the noise and is a zero mean Gaussian random variable
with variance σ2, the above condition reduces to

Pe =
1

2
{p(Z > A) + p(Z < −A)}

Since Z/σ ∼ N(0, 1) we can write this as

Pe = p(Z > A) = 1− Φ(A/σ) ≡ Q(a/σ)

[5]
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