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1 (a) We use sinewave testing to find the gain and phase shift of the system at a
range of frequencies.

The system must be stable, in order that a steady-state can be reached. The system
should also be linear and time-invariant (at least approximately). [5]

(b) (i) Extending the low frequency +20 dB slope with a straight line
intersects the 0 dB line at around 0.35 rad s−1. This corresponds to the as
term and suggests that 20log10(0.35 a) = 0, so that

a' 1/3.5 = 2.9

Or, one could also use the gain at 0.01: for low ω , |G( jω) ≈ a jω .
Therefore

20log |G( j0.01)|= 20log10(a0.01) =−30

=⇒ a' 3.1623

The magnitude plot suggests a corner frequency of a pole around
0.1. rad s−1. This agrees with the phase having dropped to +45 degrees at
0.1. rad s−1. Which suggests ( with 1+ cs ∝ 1+ j)

c = 10

Then we have the complex poles: from the phase intersection at -90
degrees or the peak of the gain, we can read off that

wn = 2

We then consider the zeros: look at intersection of phase plot at -225
degrees, which occurs at ω = 50, so that b =−1/50. [7]

(ii) The Bode diagram of the compensated system is shown below:
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[5]

(iii) At ω = 4 phase margin is 45 degrees. Need to add around 17 dB, which
will give a k of approximately 7. See figure below.
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[3]

2 (a) Bookwork [3]

(b) (i) Using the ‘virtual earth’ assumption and letting i be the current
into the upper output terminal:

i =
v0
R1

+C1v̇0 and i =− vi
R2

Equating and taking Laplace transforms (with zero initial conditions)
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(
1

R1
+C1s

)
v̄0(s) =−

1
R2

v̄i(s)

=⇒ v̄0(s)
v̄i(s)

=− 1
R2

1
1

R1
+C1s

=−R1
R2

1
R1C1s+1

[5]

(ii) At s = j/T transfer function is given by k4

(1+ j)4
= k4

(2 j)2
=−k4

4

[7]

(iii) Negative feedback: stable
⇔ 0 < k4/4 < 1 ⇔ 0 < k <

√
2

Positive feedback: stable
⇔ 0 < k4 < 1 ⇔ 0 < k < 1 [5]

3 (a)

V sT̄ = F(T̄i−T )+
1

ρcρ

Q̄in

=⇒ T̄ =
1

V s+F

(
FT̄i +

1
ρcρ

Q̄in

)
and

1
ρcρ

Q̄in = kp(T̄0− e−sτ T̄ )
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[5]

(b)

T̄ =
1

V s+F

(
FT̄i + kp(T̄0− e−sτ T̄ )

)

=⇒ T̄ =
kp

V s+F + kpe−sτ
T̄0 +

F
V s+F + kpe−sτ

T̄i

[5]

(c) if kp = 0, T̄ = F
V s+F T̄i =

1
50s+1 T̄i

So T̄i = 1/s =⇒ T̄ = 1
s −

1
s+0.02

=⇒ T (t) = 1− e−0.02t t > 0

This is sketched below:
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[5]

(d) Steady state amplitude of oscillation in T is

|H2( j)|= 0.1
|5 j+0.1+0.05e−2 j|

= 0.0202

[5]
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SECTION B

4 (a) Part (i) is standard bookwork, part (ii) uses (i) to derive the result:

(i) From notes:
The convolution of two functions f (t) and g(t) is written as h(t) = f ∗g

and defined by

h(t) = f ∗g =
∫

∞

−∞

f (τ)g(t− τ)dτ.

Taking the FT of the convolution gives

H(ω) =
∫

∞

t=−∞

{∫
∞

τ=−∞

f (τ)g(t− τ)dτ

}
e− jωt dt.

Change the order of integration and substitute u = t− τ , [ =⇒ dt = du
and no change of limits]:

H(ω) =
∫

∞

−∞

f (τ)
[∫

∞

u=−∞

g(u)e− jω(u+τ)du
]

dτ

=

{∫
∞

−∞

f (τ)e− jωτdτ

}{∫
∞

−∞

g(u)e− jωudu
}

= F(ω)G(ω).

[3]

(ii)

FT (R f g) =
∫

∞

t=−∞

{∫
∞

τ=−∞

f (τ)g(τ + t)dτ

}
e− jωt dt

as in part (i), substitute u = τ + t to give

FT (R f g) =
∫

∞

−∞

f (τ)
[∫

∞

u=−∞

g(u)e− jω(u−τ)du
]

dτ

=

{∫
∞

−∞

f (τ)e jωτdτ

}{∫
∞

−∞

g(u)e− jωudu
}

= F(−ω)G(ω).

[Also OK to put F∗(ω)G(ω)]. [2]
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(iii) Because FT ( f (t)∗g(t)) = F(ω)G(ω), we know that FT (g(t)∗ f (t)) =
G(ω)F(ω) = F(ω)G(ω) = FT ( f (t) ∗ g(t)), so without resorting to the
integral form we know that f ∗g = g∗ f , ie convolution is commutative. [Also
fine to write down the integrals and show this].

Similarly FT (R f g(t)) = F(−ω)G(ω), so
that FT (Rg f (t)) = G(−ω)F(ω) 6= FT (R f g), so R f g(t) 6= Rg f (t), ie cross-
correlation is not commutative. Since f (−t) will have a FT of F(−ω), we
see that

FT (Rg f (t)) = FT (R f g(−t)), so that Rg f (t) = R f g(−t)

[Note, also OK to do this via the original integral – from which it is
obvious. ]

[2]

(b) (i) Again, this is bookwork. From the notes:
Inverse FT gives:

p(t) =
1

2π

∫
∞

−∞

q(ω)e jωtdω

Now, if we replace t in the above by −ω ′ and ω by t′ (ω is simply an
integration variable), we have

p(−ω
′) =

1
2π

∫
∞

−∞

q(t′)e− jω ′t′dt′

Rearranging this gives:

2π p(−ω
′) =

∫
∞

−∞

q(t′)e− jω ′t′dt′ = FT (q(t′))

where the RHS is the exact form of the FT of q(t′).
Therefore, if we have one Fourier transform pair:

p(t) FT←→ q(ω)
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then we automatically have (without any integration) the dual Fourier
transform pair:

q(t) FT←→ 2π p(−ω)

[4]

(ii) From the databook we know that a rectangular pulse, s(t), of width b
and height c, centred on the origin, has a FT given by S(ω) = bc sincωb

2 .
From duality we know then that S(t)↔ 2πs(−ω).
If we take b = 2 and c = 1/2, we have that the FT of a pulse, s(t),

centred on the origin with width 2 and height 1/2 is S(ω) = sincω .
Therefore, by duality, the FT of sinc t is given by 2πs(−ω), ie the FT

of sinct is a rectangular pulse centred on the origin, of height π and width 2. [4]

(iii) Recall that Parseval’s theorem tells us that

∫
∞

−∞

| f (t)|2dt =
1

2π

∫
∞

−∞

|F(ω)|2dω

Therefore∫
∞

−∞

sinc2tdt =
1

2π

∫
∞

−∞

|s(ω)|2dω =
1

2π

∫ 1

−1
π

2dω =
π2

2π
[ω]1−1 = π

[5]

5 (a) The ideal frequency response for perfect reconstruction is:

Hr(ω) =

T, −ωmax < ω <+ωmax

0 otherwise

where T = 2π/ωs,(where ωs = 2π fs), since this filter is designed to encompass the
complete FT of the original signal as we know we are sampling at or above the Nyquist
frequency.

The impulse response of the filter is the inverse Fourier transform of Hr(ω). We
know that the inverse Fourier transform of a rectangular pulse is a sinc function, and it
can easily be shown (use the databook) that the IFT of Hr(ω) is
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hr(t) =
ωmaxT

π
sinc(ωmaxt)

If we are sampling at the Nyquist frequency, ωmax = ωs/2, the above becomes

hr(t) = sinc(ωst/2)

Since multiplication in the frequency domain implies convolution in the time
domain, we are therefore able to completely recover the signal via the following
convolution

f (t) = hr(t)∗ fs(t)

By substituting fs(t) = ∑
∞
n=−∞ f (nT )δ (t − nT ) and performing the convolution,

the above equation becomes

f (t) =
∫

∞

−∞

fs(τ)hr(t− τ)dτ

=
∫

∞

−∞

∞

∑
n=−∞

f (nT )δ (τ−nT )hr(t− τ)dτ

Rearranging integral and summation signs gives

f (t) =
∞

∑
n=−∞

f (nT )
{∫

∞

−∞

δ (τ−nT )hr(t− τ)dτ

}
which can be evaluated as

f (t) =
∞

∑
−∞

f (nT )hr(t−nT ) (1)

Which can be viewed as interpolation of the samples with a sinc function. Note that
the above holds as a reconstruction filter even if we do not sample exactly at the Nyquist
frequency (as long as we sample at or above the Nyquist frequency). Full marks could be
gained without explicitly putting down equation 1, but there had to be some reference to
convolution with the reconstruction filter. [6]
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(b) If we sample at 0.25s intervals we will have N = 8 samples at t =

0,0.25,0.5,0.75,1.0,1.25,1.5,1.75. Thus our discrete set of samples is

yn = {1,1,1,1,0,0,0,0}

Since our DFT coefficients are given by

Yk =
N−1

∑
n=0

yne− jkn 2π
N

we can rewrite this as

Yk =
3

∑
n=0

yne− jkn π
4

since only the first 4 components of yn are non-zero, and N = 8.

We can then evaluate the first 3 DFT coefficients as follows:

Y0 = {1+1+1+1}= 4

Y1 = {1+1.e− j.1.1.π/4 +1.e− j.1.2.π/4 +1.e− j.1.3.π/4}

= {1+ e− jπ/4 + e− jπ/2 + e− j3π/4}= 1− (1+
√

2) j

Y2 = {1+1.e− j.2.1.π/4 +1.e− j.2.2.π/4 +1.e− j.2.3.π/4}

= {1+ e− jπ/2 + e− jπ + e− j3π/2}= 1− j−1+ j = 0

So that Yk = [4,1− j(1+
√

2),0, ....].

We know that the FT of a rectangular pulse centred on the origin is a sinc, thus if
we shift the pulse (y(t) is such a shifted pulse) we multiply by a complex exponential
– which means the magnitude remains unchanged. For a pulse of width b and height c
centred on the origin, the FT is sinc(ωb/2). Thus, for y(t) where b = 1 and c = 1, our
continuous FT takes the form sinc(ω/2). Thus, the first null will occur when ω = 2π , or
f = ω/(2π) = 1. We know that Yk corresponds to a frequency, f , of k

NT , and in this case
T = 0.25s so k

NT = k/2.

Therefore, Yo corresponds to f = 0, Y1 corresponds to f = 1/2, Y2 corresponds to
f = 1. At f = 1 we expect the coefficient to be zero (first null of the sinc) in the absence
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of aliasing – the answer needs to take into account aliasing and to show that the aliased
components also have nulls at f = 1, or at least to mention aliasing. [Ideally we would like
something which states that the spectrum repeats at intervals of the sampling frequency,
in this case 8Hz, and from this we can see that all of the aliased components will also
have null values at ω = 2π .] [8]

(c) If we are to avoid aliasing, we need to sample at twice the maximum
frequency, ie 40kHz – one might also include a 10% roll off, which would mean sampling
at 44kHz. So if we have a total of 1.5×106 bits, then the number of bits per sample is N,
where

N =
1.5×106

2×44×103 = 3000/4×44≈ 17 bits

If the signals can be approximated by sinusoidal components, we can take the signal
power as V 2/2 (the square of the RMS signal), if we assume our voltage range is −V to
+V . We also know that the RMS quantisation noise is given by ∆/

√
12 if the step size is

∆ and we assume that the real signal is equally likely to occur anywhere in the interval.

Thus the SNR is given by the ratio of the square of the RMS signal and noise values;

SNR =
V 2/2
∆2/12

=
6V 2

∆2

If our interval is of length 2V and we have N bits (2N levels), our ∆ is given by

∆ =
2V
2N = 21−NV

So that SNR = 3×22N−1.

Therefore, in dB, our SNR is given by

10log10(3×22N−1) = 1.76+6.02N

which is in the Databook! So, if N=17, SNR≈ 104dB. [6]

6 (a) This is bookwork, so we expect them to reproduce the explanations in the
Comms notes.
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The 3 main methods are FDMA (Frequency Division Multiple Access), TDMA
(Time Division Multiple Access) and CDMA (Code Division Multiple Access).

FDMA: Multiple users are multiplexed in the frequency domain, such that they do
not interfere with each other, using a fraction of the total bandwidth. DSB-SC modulation
can be used for each user so that the spectrums do not overlap.

TDMA: Multiple users are multiplexed in time, so that they transmit one after the
other, each using the whole bandwidth B. We divide the frame duration, Tf , into K slots
of duration Tu = Tf /K for K users.

CDMA: Multiple users are multiplexed in code or signature, and transmit using
the whole bandwidth B over the whole time frame duration Tf . a signature is a signal
characteristic to each user, and known to the receiver. There would be K different
signatures for K users.
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[5]

(b) For a channel with additive white Gaussian noise (noise PSD is N0), the
bandwidth, B, capacity, C and transmitted power, P are related by

C = B log2(1+
P

N0B
)

Thus

2C/B = 1+
P

N0B

which leads to

P = BN0(2
C/B−1)

[3]

(c) For FDMA we have

CFDMA =
B
K

log2

(
1+

P

N0
B
K

)
and for TDMA we have

CT DMA =
1
K

[
B log2

(
1+

PK
N0B

)]
Putting B/K = Bu, the bandwidth per user we see that both of these reduce to
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C = Bu log2

(
1+

P
N0Bu

)
[3]

(d) (i) The bandwidth available is 250− 50 = 200MHz. We know that
the BPSK spectrum is given by

SBPSK( f ) =
1
2
[X( f − fc)+X( f + fc)]

where fc is the carrier frequency. For a rectangular pulse of unit
amplitude and duration T we know that X is given by T sinc(π f T ), so that
the spectrum would look like the case below, where the first null occurs when
π f T = π , ie f = 1/T . In our case R = 50×103 bit/sec, so

T = 1/R = 1/(5×104)sec

Giving the first null at ∆ f = 50kHz and the second null at 100kHz.

[5]

(ii) If any overlaps are to occur beyond the first sidelobe, each spectrum
will take up 2×100kHz, so the bandwidth of each user will be 200kHz. The
maximum number of users is therefore

200×106

200×103 = 1000

We can therefore accommodate M = 1000 users. [4]
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END OF SOLUTIONS
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