ENGINEERING TRIPOS PART IB, 2013 COMMENTARY, PAPER 7 MATHEMATICAL METHODS

Question 1.

The most common candidate error was to ignore the result of $b(i)$, that contours of constant ψ correspond to the flow streamlines, when attempting $\mathrm{b}(\mathrm{ii})$. Doing so leaves an extremely difficult integration problem to be solved. The other frequent omission was failure to recognise the differential operator derived in $\mathrm{c}(\mathrm{i})$ as the Laplacian, for which the polar form required in c(ii) is a standard result.

Question 2.

Many of those attempting this question were hamstrung by not knowing the bookwork required for part a. Weaker candidates often tried to evaluate the integral in b directly, rather than by taking advantage of Stokes' theorem. The line integral in c(ii) can be done directly without much more effort than the official solution; defining a 'potential' also gives the right answer (because of the form of the vorticity vector), but is cheating, as the field is not irrotational.

Question 3.

The only frequently occurring mistakes here were those associated with mathematical illiteracy, specifically: the inclusion of time derivatives in the Laplacian operator; differentiating the functions $Y(y)$ and $Z(z)$ with respect to variables other than y and z.

Question 4.
This question centres on the use of conditional probability and Bayes' rule. Difficulties with the two initial, more conceptual, questions were more common than problems with the calculations.

Question 5.

This question potentially involves large, and time-consuming, amounts of calculation. The slog can be avoided by utilising knowledge of the fundamental definitions of the relevant vector spaces, rather than relying on their recipes.

Question 6

Like Qu. 4, this question caused more problems in its conceptual aspects than its calculations. Copying the data book formula for the QR factorisation was not regarded as an adequate explanation for how it can be employed.
a) $\nabla \cdot \underline{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial^{2} \psi}{\partial y \partial x}=0$
b) (i) $\delta \psi=\frac{\partial \psi}{\partial x} \delta x+\frac{\partial \psi}{\partial y} \delta y$

On a counter of content 4 , $\delta \psi=0$, so (substituting for the partial derivatives of 4):

$$
0=-v \delta x+u \delta y
$$

$\frac{\delta y}{\delta_{x}}=\frac{v}{u} \quad$ Significance: this is the equation that
defines the streamlines of the flows
(ii) Streamlines have bee shown to correspond to $4=$ cunt

$$
\begin{aligned}
& \therefore \quad C\left(x^{2}+y^{2}\right)=y \\
& x^{2}+\left(y-\frac{1}{2 C}\right)^{2}=\left(\frac{1}{2 c}\right)^{2}
\end{aligned}
$$

Cirdes, centred at ($0,1 / 2 C$)
 radius $|1 / 2 c|$
c) (i) $\nabla_{x} \underline{\underline{u}}=0 \Rightarrow\left|\begin{array}{ccc}\underline{i} & \underline{j} & \underline{k} \\ \partial / \partial x & \frac{\partial y}{\partial} / \partial z \\ \partial \psi / \partial y & -\partial / \partial x & 0\end{array}\right|=0 \quad$ ie. $\underline{k}\left[-\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{\partial^{2} \psi}{\partial y^{2}}\right]=0$

In vector calculus notation, $\nabla^{2} \psi=0$
(ii) Date book: $\quad \nabla^{2} \psi=\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{v \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}$ in plans (r, θ)

$$
\begin{array}{rlrl}
\psi=r^{-n} f(\theta) \quad \frac{\partial \psi}{\partial r} & =-n r^{-(n+1)} f(\theta) & \frac{\partial \psi}{\partial \theta} & =r^{-n} f^{\prime}(\theta) \\
\frac{\partial}{\partial r}\left(\frac{\partial \psi}{\partial r}\right) & =+n^{2} r^{-(n+1)} f(\theta) & \frac{\partial^{2} \psi}{\partial \theta^{2}}=r^{-n} f^{\prime \prime}(\theta)
\end{array}
$$

So $\nabla^{2} \psi=0 \Rightarrow n^{2} f(\theta)+f^{\prime \prime}(\theta)=0$
with solutions $f(\theta)=\cos \theta \theta$
and $f(\theta)=\sin n \theta$
Hence $\quad \psi=\frac{A}{r^{n}} \cos n \theta+\frac{B}{r^{n}} \sin n \theta$
with A, B abitrony cuntants.
a) (i) Let \underline{u} be the vector field, and cumider a small surface element in the field:
$\delta 5$ is element ane

\simeq is element normed
Al is a line element, in the clochuse divation chen the elemental area is viewed in the n direction

Then $\nabla_{x} \underline{u} . \underline{n}=\lim _{\delta S \rightarrow 0} \frac{\oint_{\underline{u} . d \underline{u}}^{\delta S}}{\delta S}$ for arbitrary n

$$
=\quad\left[\lim _{s \underline{s} \rightarrow 0} \nabla_{x} \underline{u} \cdot d \underline{s}=\oint \underline{u} \cdot d \underline{L} \text { also ok. }\right]
$$

(ii) Comider a large area of finite size, split into many dement:

Define δS_{j} as $\delta S \underline{n}$ for element j
Then, form the fundounatel definition,

$$
\lim _{\delta S \rightarrow 0} \sum_{j}\left(\nabla_{x} \underline{u}\right)_{j} \cdot \delta \underline{S}_{j}=\lim _{\delta S \rightarrow 0} \sum_{j} \oint_{j} \underline{u} \cdot \underline{\mu}
$$

- All edges of adjoining cells give RHS calculations that cancel
- LIES becomes an ocrea integ-d in the limit

Hence $\int_{S} \nabla_{x} \underline{u} \cdot d \underline{S}=\oint_{\substack{\text { baridayy } \\ i s}} \underline{u} \cdot d \underline{u}$,
Which is Stoles' theorem.
b) From Stokes theorem, $\int_{r \leqslant R} \nabla_{x} \underline{\underline{u}} . \underline{s}=\int_{r=R} \underline{u} \cdot d \underline{l}$

$$
=1-e^{-1}
$$

c) (i)

$$
\begin{aligned}
& \nabla_{x} v=\frac{1}{r}\left|\begin{array}{ccc}
e & r e_{\theta} & e_{z} \\
\partial / \partial & \gamma / \partial \theta & \partial / \partial z \\
u_{r} & r v_{\theta} & v_{z}
\end{array}\right| \\
& \text { N.B. Notation: } \\
& r \text { used have fro } p \\
& =\frac{1}{r}\left|\begin{array}{ccc}
e_{r} & r \underline{e}_{\theta} & e_{z} \\
\frac{e_{r v}}{r} & \partial / \partial \theta & \gamma / r_{z} \\
-r & r v_{\theta} & 2 z
\end{array}\right|=-\frac{\partial v_{\theta}}{\partial z} e_{r}+\left(\frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r}\right) \underline{e}_{z}
\end{aligned}
$$

(ii)
$\theta=0$
plane:

Apply Stokes, nothy that $\underline{Q} . d S=0$ in thins plane.

$$
\begin{aligned}
& \int_{L_{1}} \underline{v} \cdot \underline{u}+\int_{L_{2}} \underline{v} \cdot d \underline{u}+\int_{k_{3}} \underline{v} \cdot d \underline{u}=0 \\
& \int_{4} \underline{v} \cdot d s=\int_{0}^{1} v_{z} d z-\int_{0}^{1} v_{0} d r \\
& \\
& =\left[z^{2}\right]_{0}^{1}-\left[-\frac{r^{2}}{2}\right]_{0}^{1}=3 / 2
\end{aligned}
$$

c) (i) Substinte $\phi=\phi_{0} e^{i\left(\omega t-h_{x}\right)}$ intes wane equ:

$$
\left(-k^{2}+\frac{\omega^{2}}{c^{2}}\right) \phi_{0} e^{i(\omega t-k n)}=0
$$

So the proposed form is a solution for $k= \pm \omega / c$
(ii) The plase of the harmonic solution is constant fow

$$
\omega t-k_{x}=\text { cont }
$$

which eepresents a distubance trawelling at speed w/k. $k=\omega / c \quad x=c t+$ cont; travel in the x divection $u=-\omega / c \quad x=-c t+$ const ; cravel in -ree u divection.
b) Substinte $\phi=Y(y) z(z) e^{i\left(\omega t-k_{x}\right)}$ into cronce eqn:

$$
\left(-k^{2}+\frac{y^{\prime \prime}}{y}+\frac{z^{\prime \prime}}{z}+\frac{\omega^{2}}{c^{2}}\right) Y(y) z(z) e^{i(\omega t-k x)}=0
$$

i.e. $\quad k^{2}=\frac{\omega^{2}}{c^{2}}+\frac{y^{\prime \prime}}{y}+\frac{z^{\prime \prime}}{z}, \alpha \quad k^{2}+\alpha^{2}+\beta^{2}=\frac{\omega^{2}}{c^{2}}$
c) $\frac{y^{\prime \prime}}{y}=-\alpha^{2} \Rightarrow y=A \sin \alpha y+B \cos \alpha y$

$$
\begin{gathered}
\frac{\partial \phi}{\partial y}=0 \text { an } y=0 \Rightarrow A=0 \\
\frac{\partial \phi}{\partial y}=0 \text { in } y=L_{y} \Rightarrow-\alpha B \sin \alpha L_{y}=0
\end{gathered}
$$

Satishied to all B, but arly if $\alpha L_{y}=n \pi$, n integer
So $\quad Y=B \frac{n \pi y}{L y}, n=0,1 \ldots$
Similenly $\quad Z=C \cos \frac{m \pi z}{L_{z}}, \quad m=0,1 \ldots .$.
d) x-wise behavian is determined by k; from (b) ...

$$
k=\sqrt{\frac{w^{2}}{c^{2}}-\alpha^{2}-\beta^{2}}
$$

- Solutions fur K are wow imagihary, cowesparding to expmentials ; if $K=i K$, then

$$
e^{i k n}=e^{-k x}
$$

- The to evarilable solutions represent eithe exponential guott ar docay
- Exponentral groutt is umplysizal, so experentid decay would be seen.
a) $p(A \mid B)$ is the probability that A occurs, given the lmouledge that B has occurred.

Definition: $p(A \mid B)=\frac{p(A \text { and } B)}{p(B)}$
b) From the definition of cunditiand probability, and the fact that $p(A$ and $B)$ is identical to $p(B$ and $A)$,

$$
p(A \mid B) p(B)=p(B \mid A) p(A)
$$

Hence: $\quad p(A \mid B)=\frac{P(B \mid A) p(A)}{p(B)}$
c) (i) Lie detector indicates falsehood either it citizen hies and detector is convent, $\underline{\sim}$ it citizen tells tilt and defaces ens.

Let F be this occurrence; $p(F)=0.001 \times 0.95+0.999 \times 0.05$

$$
=0.0509
$$

(ii) Let L be the condition that the perse is lying.

Bayes: $p(L \mid F)=\frac{P(F \mid L) p(L)}{P(F)}=\frac{0.95 \times 0.001}{0.0509}$
d) Let C represent 'cools'.

We wont $p(C \mid F)$.
Falsehood is wow detected if: honest citizen is selected and hie detector indicates falsehood cole is setuted
i.e. $\quad P(F)=0.9 \times 0.0509+0.1 \times 1 \times 0.95=0.14081$

$$
\begin{aligned}
p(C \mid F) & =\frac{\operatorname{Pnn}(C)(C)}{p(F)} \\
& =\frac{0.95 \times 0.1}{0.14081} \\
& =0.675
\end{aligned}
$$

(a) A is not inseverable it $\operatorname{det}(A)=0$

$$
\begin{array}{rl}
\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & t \\
1 & 4 & t^{2}
\end{array}\right|=0 & 2 t^{2}-4 t-\left(t^{2}-t\right)+(4-2)=0 \\
& t^{2}-3 t+2=0 \\
& (t-2)(t-1)=0 \Rightarrow t=1 \sim 2
\end{array}
$$

b) (i) $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 4 & 1\end{array}\right] \quad 1 \quad A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 4 & 4\end{array}\right]$

Column space: $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right] \quad 1 \quad$ is left.

Row space $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$,low sale $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]$

$$
\left.\left(\left[\begin{array}{cc}
1 & 4
\end{array}\right]=3\left[\begin{array}{lll}
1 & 21
\end{array}\right]-2\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\right) \quad\left(\begin{array}{lll}
1 & 4 & 4
\end{array}\right]=3\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]-2\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\right)
$$

Null space \perp row space $\Rightarrow \quad \mid \quad(1,1,1) \times(1,2,2)$

$$
(1,1,1) \times(1,2,1)=\left|\begin{array}{lll}
i & \underline{k} & \underline{1} \\
1 & 1 & 1 \\
1 & 2 & 1
\end{array}\right|=-\underline{i}+\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] 1=\left|\begin{array}{lll}
i & j & k \\
1 & 1 & 1 \\
1 & 2 & 2
\end{array}\right|=-\underline{j}+\underline{k}
$$

ie. $\left[\begin{array}{lll}0 & -1 & 1\end{array}\right]$
Left will space \perp col. space $\Rightarrow 1$

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]=\left|\begin{array}{lll}
\underline{i} & \underline{j} & \underline{k} \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right|=2 \underline{\underline{i}-3 j+}: \quad \text { Islet, i.e. }\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
$$

(ii) $A \underline{x}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Hence me possible \underline{x} is $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ (batt passible matrices)
Genned solutions include ablitiay contestation from url space,
i.e.
fr $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 4 & 1\end{array}\right] \quad \underline{x}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+\alpha\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
for $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 4 & 4\end{array}\right] \quad \underline{x}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+\beta\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
a) Least-squaves sol'n satisfies:

$$
\begin{array}{cc}
A^{t} A \underline{x}=A^{t} \underline{b} \\
A=Q R: \quad R^{t} Q^{t} Q R \underline{x}=R^{t} Q^{t} \underline{b} \\
Q^{t} Q=I: & R^{t} R \underline{x}=R^{t} \underline{Q} \underline{b}
\end{array}
$$

R^{t} is inverible: $\quad R \underline{x}=Q^{t} \underline{b}$
Since R is upper triangular, \underline{x} can now bo eratiated now-by-nus, stawling with the last.
b) (i) By inspention, $\underline{q}_{1}=\underline{a}_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{t}$

$$
\begin{gathered}
\underline{a}_{2}-\left(\underline{a}_{2} \cdot \underline{q}_{1}\right) \underline{q}_{1}=\left[\begin{array}{llll}
0 & 1 & 2 & 2
\end{array}\right]^{t} \Rightarrow \underline{q}_{2}=\frac{1}{3}\left[\begin{array}{llll}
0 & 1 & 2 & 2
\end{array}\right]^{t} \\
\underline{a}_{3}-\left(\underline{a}_{3} \cdot \underline{q}_{1}\right) \underline{q}_{1}-\left(\underline{a}_{3} \cdot \underline{q}_{2}\right) \underline{q}_{2}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\frac{9}{9}\left[\begin{array}{l}
0 \\
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
-1 \\
0
\end{array}\right]
\end{gathered}
$$

Hence $\quad q_{-3}=\frac{1}{\sqrt{5}}\left[\begin{array}{llll}0 & 2 & -1 & 0\end{array}\right]^{t}$

Nuis cundetts the Cram-Schmidt acthogamalization of the colmmins of A.

Now we sech R such that $\left[\begin{array}{lll}\underline{q}_{1} & \underline{a}_{2} & \underline{a}_{3}\end{array}\right]=\left[\begin{array}{lll}\underline{q}_{1} & \underline{q}_{2} & \underline{q}_{3}\end{array}\right] R$ $\underline{a}_{1}=\underline{q}_{1} \Rightarrow$ first column of $R \quad 3\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
q_{2} can be expressed in terns of \underline{q}_{1} and $\underline{q}_{2}: \underline{q}_{2}=2 \underline{q}_{1}+\underline{q}_{2}$

$$
\Rightarrow \text { Id column o } R \text { is }\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

\underline{a}_{3} expressed in tums of $\underline{q}_{1}, \underline{q}_{2}$ and $\underline{q}_{3}: \underline{q}_{3}=\underline{q}_{1}+3 \underline{q}_{2}+\sqrt{5} \underline{q}_{3}$

$$
\Rightarrow \text { 3rd column of } R \text { B }\left[\begin{array}{c}
1 \\
3 \\
\sqrt{5}
\end{array}\right]
$$

So $A=Q R$ with $Q=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 3 & 2 / \sqrt{5} \\ 0 & 2 / 3 & -1 / \sqrt{5} \\ 0 & 2 / 3 & 0\end{array}\right] \quad R=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 3 & 3 \\ 0 & 0 & \sqrt{5}\end{array}\right]$
(ii)

$$
\begin{aligned}
& Q^{t} \underline{b}=\left[\begin{array}{c}
1 \\
10 / 3 \\
-3 / \sqrt{5}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 3 & 3 \\
0 & 0 & \sqrt{5}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
10 / 3 \\
-3 / \sqrt{5}
\end{array}\right]} \\
& \Rightarrow \quad \begin{array}{l}
x_{3}= \\
x_{2}=\frac{10}{9}-x_{3}=77 / 45
\end{array} \\
& x_{1}=1-2 x_{2}-x_{3}=-82 / 45 \\
& x=\frac{1}{45}\left[\begin{array}{r}
-82 \\
77 \\
-27
\end{array}\right]=\left[\begin{array}{r}
-1.82 \\
1.71 \\
-0.6
\end{array}\right]
\end{aligned}
$$

