- 1. a) points (w, e) are (0.06, 0.472), (0.10, 0.400), (0.14, 0.420), (0.18, 0.523) to find saturation lines in this range, use $w = S_r e / G_s$ for e = 0.4 and 0.5 optimum compaction at e = 0.39, $\rho_d = 1906$ kg m⁻³ ρ_d is preferred to e because it does not require a measurement of G_s field compaction is calibrated against Proctor test, e.g. by energy per unit volume
 - b) optimum water content 11% wet of optimum water is trapped in voids and prevents compaction dry of optimum air is trapped, with macro-pores held open by fines in suction
 - c) true that soil suction on dry increases effective stress, stiffness and strength not true that soil overall will swell the fines in suction swell and soften so that macro-pores will collapse on wetting, giving overall settlement engineer should demand w > 11% and e < 0.45, say to keep $S_r > 0.75$
- 2. a) $E_o \approx 476 \text{ kPa}$, $C_v \approx 5.7 \text{ x } 10^{-8} \text{ m}^2 \text{ s}^{-1}$, $k \approx 1.2 \text{ x } 10^{-9} \text{ ms}^{-1}$ b) $\Delta \sigma'_v \approx 35 \text{ kPa}$ in the field instead of 50 kPa correct E_o by assuming a λ -line, $E_o \approx 390 \text{ kPa}$ $k \approx 1.2 \text{ x } 10^{-9} \text{ ms}^{-1}$ as before, $C_v \approx 4.8 \text{ x } 10^{-8} \text{ m}^2 \text{ s}^{-1}$
 - c) $\rho_{ult} \approx 0.54$ m, $\rho_{l\ year} \approx 0.46$ m taking d = 1.5 m 45700 tonnes corrected $\Delta\sigma'_{v} \approx 40$ kPa field trial fill to confirm, especially rate of drainage
- 3. a) compression on λ-lines, on yield surfaces, involves grain crushing and rearrangement unload-reload on κ-lines involves grain contact elasticity, with some rearrangement
 - b) for A go to 206 kPa, for B go to 500 kPa and then swell to 50 kPa $c_u = 47$ kPa, A \rightarrow C $\delta u = +95$ kPa, B \rightarrow C $\delta u = -61$ kPa
 - c) normally consolidated soil A will settle too much if it drains, but it gets stronger overconsolidated soil B will soften too much if it drains, and swell slightly
- 4. a) grain crushing, critical friction
 - b) σ'_{crit} = 3954 kPa, τ_{crit} = 2471 kPa for constant volume shearing, e.g. pile driving c) 40.6°, 10.8°; 49.3°, 21.6°
 - d) at $\sigma' = 395$ kPa, $\tau_{max} = 339$ kPa; at $\sigma' = 39.5$ kPa, $\tau_{max} = 46$ kPa straight line will not fit critical state and implies strength at zero effective stress power law works perfectly for $\beta = 0.86$