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1(a)

The state transition network is shown below. The events are the dice rolls (arcs in the graph). The
states (nodes in the graph) represent the possible outcomes of each dice roll (win, lose, or a “point’).
The player begins at the node ‘Start’. The first roll leads to “Win’, ‘Lose’, or one of the states
representing a ‘point’ (P4, P5, P6, P8, P9, P10). The process stops when the system enters state

‘Win’ or ‘Lose’.

The transition probability are calculated by simple probability analysis. For instance the transition
probability from state ‘Start’ to state “Win’ is the probability of getting 7 or 11. Since there are six
possible ways of getting 7, and two possible ways of getting 11, out of 36 total possible outcomes, it

is easy to calculate the transition probability as 8/36=0.222.

Transition Matrix:

From/To| Start | Win | Lose P4 P5 P6 P8 P9 P10
Start 0 0.222 | 0.111 | 0.083 | 0.111 | 0.139 | 0.139 | 0.111 | 0.083
Win 0 1 0 0 0 0 0 0 0
Lose 0 0 1 0 0 0 0 0 0

P4 0 0.083 | 0.167 | 0.75 0 0 0 0 0
P5 0 0.111 | 0.167 0 0.722 0 0 0 0
P6 0 0.139 | 0.167 0 0 0.694 0 0 0
P8 0 0.139 | 0.167 0 0 0 0.694 0 0
P9 0 0.111 | 0.167 0 0 0 0 0.722 0
P10 0 0.083 | 0.167 0 0 0 0 0 0.75
Transition Network
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1(b)(1)

There is only one class (absorbing of course) containing all the states.

Transition network 0.2

1(b) (ii)

Given q(0)=[0,1,0,0,0], it is possible to calculate q(1)=q(0)P and then
q(2)=q(1)P=[0.03, 0.81, 0.11, 0.01, 0.04]

and

q(3)=q(2)P=[0.039, 0.763, 0.102, 0.020, 0.074].

1(b) (iii)

Yes, because the Markov chain has finite state space and it is irreducible and aperiodic.

To calculate the limiting distribution vector it is sufficient to solve the following linear system
=P

T0, 10, +HT0,+T0,+ =1

from which we obtain
mt,= 0.034
7= 0.638
1= 0.091
mt,= 0.091
.= 0.145



2(a)

U = Interarrival distribution;

V = Service time distribution;

s = Number of servers;

k = Maximum number of customer in the system (in service and in queue);
W = Queuing discipline.

Assumptions:

- Interarrival times are independent and identically distributed.
— Service times are independent and identically distributed.

- Interarrival and service times are independent.

2(b)

The state N(t) of a queuing system at time t is the number of customers in the system (i.e. in the
queue or in service) at time t.

The system is said to be in steady state if P(N(t)=n) does not change with t any more.

If we call A and [ respectively the arrival rate and the service rate in a G/G/s queue, the utilization
factor is the ratio p=A/(spL).

p is the fraction of time we expect the service facility to be busy. Therefore if p>1 the queue
explodes. In fact the condition p<1 is necessary for the existence of a steady state solution.

2(c)

The random variable X has the lack of memory property if for any t,s>0 it holds:

P(X>t + s | X>8)=P(X>1).

The lack-of-memory property is typical for interarrival times, provided arrival rates are constant
over time. But, if a continuous random variable (with a continuous density function) has the lack-
of-memory property then it is exponentially distributed. This is the reason for the prevalence of the
exponential distribution in queuing models.

2(d)

By applying the birth and death process theory:

For the M/M/1 queue with arrival rate A and service rate i, we have Ap= A, up={t for all n.
Hence cp= (A /W) =p! and s=cy +cp +..= pl+p2+.. = p/(1-p).

Hence pg = 1/(1+s) =1-p, pn= cn po = (1-p) p"-

Thus L= 1p1+2 pa+3p3+... = (1-p) (1p+2p2+3p3+..) = p/(1-p) = M(U-N),
and L= 1pp+2p3+3p4+...= p*/(1-p).

Moreover using Little’s formula and the relation W= Wy +1/i , we have

W= 1/u(1-p) and W= p/p(1-p).

2(e)
Let A(t) denote the number of customers that arrive in the time interval [0,t]. If the interarrival
times are independent and exponentially distributed with parameter Athen A(t) has a Poisson
distribution with parameter At, i.e.

P(A(t)=n)=e"M((At)/n!
and A(t) is called a Poisson arrival process.
E[A(1)]=V[A(t)]= At (mean=variance).



3(a)
The sum of squared errors is of the form

SSE(a,b) =Y (a+bx,—y,)* .
i=1
Differentiating this with respect to the two the two parameters gives

BSSE( ,b)y= 22(a+bx -y)= 2na+2b2x —ZEJ’, =0

aSSE( b)=Y 2(a+bx, - y,)x, =2ay x, +2bY x} =2 y,x, =0

This is a linear system in the two unknowns a,b . Dividing the first equation by 2n gives
a+bx =y,
_ Z x, / 2 Y . )
where X = Y= 7, are the averages of the xand y values in the data. Thus the line of
best fit passes through the “average point” (¥, y) . Plugging this into the second equation gives

ZX(y, 7 _ 2 x)y,_z/l
zx (x, = X) X(x -x)* i

where 1, _(x /E(x _@7 >

and

a=-bx+y.

3(b)
Since the observations y, are contaminated with errors, the least squares estimates depend on the
sample produced by the random data generating process. Therefore the line of best fit is a random
line.

3(c)
Recall that » = Eki (a+Px, +€,)= ZA,. (o + Bx;)+ 2/1,8,

Non-—random Random

The random element is the sum of # random variables 4., , where 7 is the number of data points
(x,,7,). We know from the central limit theorem that the sum of independent random variables
(whatever their distribution) tends to become more and more normal as the number of random
variables increases. If the number 7 is large enough, say #» =30 as a rule of thumb, then we may
safely operate under the assumption that the sum is indeed normal. The expectation is obviously
zero since the expected value of a linear combination of random variables is the linear combination
of the expected values. For the calculation of the variance we need to use the fact that the variance
of the sum of independent variables is the sum of their variances and that VAR(aX) = a’VAR(X)
for any number @ and any random variable X By applying these two rules we obtain

’)

VAR Ae) =0 A _E(x 7
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where ¢ ?is the common variance of the error terms €,. The last equation is a direct consequence of
the definition of the coefficients 4, .

Let us now investigate the non-random term Z/li (ot + Bx,) in our formula for the least squares

slope b, which is of course the expected value of b, since the random term has expected value

zero. We have
Za'i(a.*—ﬁxi) :OC(ZAi)*l-ﬁ(z}Lix,) .

T - 2T x)-n )=
BN YO D YR

Notice first that

Furthermore,

- — E(Xi —f)(xi _f)
E A, - E A, - E .= E Ax, — s =
le le X A’/ )“/(xl X) Z(xj _f)2 1

and therefore
3 2@+ fr) = .

Consequently: Our analysis shows that the least squares slope b has (approximately) a normal

o : . 2
distribution with mean 8 and variance O 5 -
Z(X i f)

3(d)
a =95.612
b =1.047

3%



4(a)
P(all servers idle)= 1, = 0.068

4(b)
P(no wait)= 1, + 1T, + 7T, = 0.450

4(c)
P(wait)=1 - P(no wait) — P(full) = 1 — (%, + T, + T, + 4= 0.447

4(d)
P(lost customer) = 1, = 0.103

4(e)
L= Im, + 275 + 31, = 0.702

4(f)
L=n,+2n,+3(1-7,- &, -7,) =2.244

4(g)
E=L,/s=2244/3=748%
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