ENGINEERING TRIPOS PART IIA

Saturday 10 May 2003  9to 10.30

Module 3D7

CONTINUUM MECHANICS NUMERICAL METHODS
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 The statically indeterminate, two-dimensional structure shown in Fig. 1 consists
of four pin-jointed bars which meet at joint M. All members are linear elastic and have
the same cross-sectional area 4 and Young’s Modulus E. The structure is initially

unstressed. A vertical load W is applied to M.

(a) Set up the equilibrium equations relating the applied forces to the internal

stress resultants r in matrix form. [20%]
(b)  Obtain their general solution in the form
r=ry+Sa
and explain the physical significance of ryand S. [30%]
[30%]

(c) Evaluater.

(d) Explain, without carrying out any detailed calculations, how your solution

would be modified if bars I and II were initially made 1% too long. [20%]

Use may be made, without proof, of the compatibility equation
STFSa =-{s7eq +STFr |

where F is the flexibility matrix and ey is the initial extension vector.
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2 The three-node finite element shown in Fig. 2 is to be used for the analysis of
uniaxial stress. The element represents a linear elastic bar of uniform cross-sectional
area 4 and Young’s modulus £. Nodes 2 and 3 are unrestrained in the x direction,
while Node 1 is fixed to a rigid support.

(a) Sketch the quadratic shape functions that correspond to unit displacements
of Nodes 2 and 3. Hence obtain the shape function matrix N such that :

d
u(x) = N(x){ 2} [50%]
ds
(b) Derive the two-by-two stiffness matrix which relates the displacements of
Nodes 2 and 3 to the corresponding nodal loads p. [50%]
/Node 1 Node 2 Node 3
—  S— -
A xu d> ds
1
| 2 |
I I
Fig. 2
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3 (a) Using a flow chart, explain how stresses are computed by the finite element
method for elastic stress analysis of a solid material. Body forces within the solid
volume and forces at the boundaries are to be applied. Isoparametric elements are to be
used. Distinguish between global, element and Gauss point levels in the flow chart. [30%]

(b) Stresses (o) and displacements (u) in a dam are to be evaluated using the
finite element method. The dam has a height of %, crown width of w, and bottom width
of w,, as shown in Fig. 3. The analysis is performed in plane strain conditions.
Determine the boundary conditions and the body force load (b) for the dam using o, u,
the coordinate system (x; and x;) and the unit vectors (e and B) given in the figure.
Classify the boundary conditions. [30%]

(c) The governing equation of one dimensional fluid flow in a porous medium
1s given as follows.

- —4-( AV )+Q0=0
dx
where A = cross sectional area
Q = volumetric rate of water supply per unit length
V = —k(dH/dx) = fluid Darcy’s velocity

H = hydraulic head
k = hydraulic conductivity

The boundary conditions are given as follows.

V=V atx=0 (Neumann boundary)
H=H atx=L (Dirichlet boundary)

For the finite element formulation, derive the weak form of this boundary value problem.
[40%)]

(Cont.
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4 Fig. 4 shows an iso-parametric element QRST and its ‘parent’, a standard four-
node quadrilateral, grst.

(a) Find the bi-linear shape functions for the nodes of the parent element. [10%)]

(b) Set up a linear geometric mapping between points in the ‘parent’ element
and the corresponding points in the iso-parametric element. [25%]

(c) Verify that point P = (4.047, 2.625) corresponds to point p = (0.75, 0.75)  [20%]

(d) Sketch the line to which g p s is transformed in the iso-parametric element.
Is it a straight line? [20%]

(e) Find the displacement components at point P due to nodal displacements:

d=[doy doy drx dry dsx dsy dix  dr

=[0.1 02 0 0 015 0 -005 0] [25%)]
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