PART IIA 2005
3F1: Signals and systems
Principal Assessor: Dr N G Kingsbury

Datasheet: None

Module 3F1, April 2005 — SIGNALS AND SYSTEMS - Solutions

(a) From the pole-zero diagram in Figure 1 we see that all the poles are inside the unit

disk, and so the system is stable.
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Figure 1: Pole-zero diagram
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(b) The magnitude response is given by |H (¢?%)] as @ varies from 0 to 7. Thus,
|H (7)) = — ! - o where d; = |eje —p‘ and dy = |ej0 - |
e’ —plle?? —p|  didy
See Figure 2. As 6 varies from 0 to 7, we see that d; gets smaller and smaller as it ap-
proaches § = 7 /4. Note that compared with d;, d, does not change that much in that
interval. d; is smallest at # = 7 /4 and therefore, the maximum magnitude response
happens at approximately § = 7 /4 (the approximately comes from neglecting the
small changes of d, around 6 = 7/4).
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Figure 2: Pole-zero diagram
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(¢) Assuming 0o, ~ §:
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For the phase angle, we sum the contributions of the zeros and subtract the contribu-

tions of the poles. Thus,
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[30%]
- ~ 20 ™ s
(d) vk = 244z €0S(Omazk + Praz) = Tl cos(7k — 7). [10%]
(e) As mention in part (b), the contribution of the pole p near the frequency § = 7/4 is

small when compared with the contribution of the pole p. Another approximation is
that the unit circle can be approximated by a line for small changes around 6§ = 7/4

(see Figure 3). The magnitude near 7 /4 is given by

) 1 1
H(e)| = — . ~ —
HEN = G —per =51 ~ [ =@

where ¢; 1s a constant. Therefore, we need to find 6 such that
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= ——C
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Since
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Apar ® ——5——C = —
ledm/4 — p[c1 0.1

5]

we need to find € such that
{eja — p! =0.1v2

Approximating the unit circle by a line for small changes around ¢ (see Figure 3) we

see that the bandwidth approximately covers the range 7/4 £ 0.1.
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Figure 3: Pole-zero diagram
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2

(a) Discrete-time Control System

(1) The closed-loop transfer function is given by

Y(2) _ 22—21% _ zK;
U(z) 1+25 202+ K,) -1

1

TR lies inside the unit disc,

The system is stable if the closed-pole at z =
re. if K3 < =3 or K; > —1.
(i1) Since E(z) = U(z) — Y (2)

2z — 1

E(Z) = m U(Z)

In the z-domain the unit step is given by,

which means that
z 2z —1

z—12(24+K,) -1
Thus, the Final Value Theorem (FVT) applies and

E(z) =

: e s 2(2z-1) 1
dim e = lim(z — 1) B(z) = lim o = &3

(ii1) For the steady-state error to be less than 1%,
| lim ex| < 0.01
k—o00

Therefore
|K71+ 1] > 100

and so
K1 >99 or K; <-101

These values all lie within the range of values in (i), permitted for stability.

[15%]

[25%)]

[10%]



2 (b) WSS Random Processes

(i) X (t) is defined to be Wide Sense Stationary (WSS) iff:

— The mean value is independent of ¢ such that
E[X(t)]=p forallt
— And the autocorrelation function depends only upon 7 = t; — ¢; such that
Txx(ti,t2) = E[X(t1) X(¢2)] = E[X (t1) X (¢, +7)] = rxx(r) forall

WSS is used when we are only interested in the properties of moments up to 2nd

order (mean, autocorrelation, covariance etc.). [10%]

(i1) For the given function, U and V' have zero mean, so X will also have zero mean for
all ¢. Hence the first condition for WSS is satisfied.

The second condition requires calculation of the ACF, which is given by the follow-
ing expectations over o:

rxx(ti,te) = FE[X(t1, ) X(t2, a)]
E[{U cos(wot1) + V sin(woty) } {U cos(wots) + V sin(wots) }]
= E[U? cos(woty) cos(wota) + E[V?]sin(wot1) sin(wotz)
+ E[UV]{cos(wot;) sin(wpts) + sin(woty) cos(wota) }
= o2 cos(wgty) cos(wotz) + 0% sin(woty ) sin(woetz) + 0

The first two terms are valid because U and V have zero means, and the final term
is zero because U and V also are independent. Since by assumption oy = oy and
converting the products of sines and cosines into sums gives:

rxx(t,tz) = of {cos(wot1) cos(wotz) + sin(wot1) sin(wota) }

= 0(2] cos(woty — wota)

which means that X is WSS since rxx depends only on 7 = ty — t; . Thus, the
ACF simplifies to:  rxx(7) = 0% cos(woT) [40%]



3 (a) Ergodic Processes

In an Ergodic Random Process we can exchange Ensemble Averages for Time Averages.
This is equivalent to assuming that our ensemble of random signals is just composed of all

possible time shifts of a single signal X ().
(b) ACF of system output

The linear system with input X (¢) and output Y'(¢) has an impulse response h(t), so
Y(0) = hit) + X(2) = [ h(8) X(¢ - B)ds

[Note: all integrals are assumed to have limits from —oo to 400, unless shown otherwise.]

Then the ACF of Y is

ryy(ti,t2) = E[Y(t1) Y(t2)]

= FE [(/ h(B1) X (t1 — B1) d51> (/ h(B2) X (t2 — B2) dﬁz)]

_ [ [ [ 16006 x00 - 8 X (02~ 1) a5 dﬁz]
_ / / R(B1) h(B2) E[X (t, — B1) X (t2 — B2)] dBy dfa
_ / / h(B) h(Ba) rxcx (tr — B, ta — B2) dBy dBa
If X is WSS, then we substitute 7 = ¢t5 — ¢; and t = ¢; to get
ryy(T) = Y(t+7)]

= // h(B2) rxx (T + B1 — B2) dB1 dp;

Now we can substitute for rxx(7) = p §(7) and use the sifting property of the ¢ function
to get

ryy(T) = //h(ﬁl)h(ﬁ2)P5(T+5l—ﬂ2)dﬁ2dﬂ1
— o [ (B (s + 1) d

[Note: This integral represents h(7) convolved with h(—7).]
(c) ACF for a system with an exponential response
Fexp(—t/T) if >0

0 if t<0
then we must deal with the discontinuity in h by suitable treatment of the limits of the
above integral. Both terms of the product in the integral must be non-zero to make any
contribution to the result.

If h(t) =

[10%]

[30%]



First consider the case when 7 > 0. In this case, both terms are non-zero when 5; > 0.
Therefore

re(r) = p / h(By) h(r + Bu) dBs

_ P exp(ﬂ) d5,
e _ —_— = — _ >
5T [exp( T ):lo 2Texp<T) if >0

Now consider 7 < 0. In this case, both terms in the integral are non-zero only when
B1 > —7. Therefore

ryy(T) = % exp (:j&) exp <%@> dp,

Combining these two results, we get

ryy(T) = %exp (%’;’)

so that ryy (7) is symmetrical about 7 = 0, as expected for an ACF.
(d) Power Spectral Density of Y

The Power Spectral Density (PSD) of a random process is defined to be the Fourier Trans-
form of its ACF. Therefore the PSD of Y is given by

o0

Sy(w) = FT{ryy(r)} = / ryy (7) exp(—jwr) dr

—0o0

Y D R e A
= /_oo 5T EXP ( T ) exp(—jwr) dr
0 (e}
p T . p —7 i
/OO oF eXP (T) exp(—jwT) dT + /0 5T €XP (—T ) exp(—jwr) dr

= /0 -2%,exp (%) exp(jw7)d7+/0 2—pT~exp <%T

p [ —7(1 — jwT) —7(1 + jwT)
= I d

2T J, exp ( T + exp T T
P -T —7(1 — jwT) =T —7(1 +]wT))] *
Y [1—ijeXp< T T ar P T .
P T T pl+jwl'+1—jwl P
2T |1 —jwT 1+ jwT 2 1+ w2T? 1+ w?T?

[30%]
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4 (a) The mutual information can be defined mathematically in a number of equivalent
ways:

I(A; B) = H(A) — H(A|B) = H(B) — H(B|A) = H(A) + H(B) — H(A, B)

where H (A|B) is the expected value of the entropy of A given that the value of B is known.
In english, the mutual information is the amount of information that knowing one of the
variables gives about the other. [15%]

(®)
H(S;) = — (0.710g,(0.7) + 0.2 10g,(0.2) + 0.0710g,(0.07) + 0.03 log,(0.03)) = 1.245

To calculate the entropy of X; the probabilities that X; = 0 and 1 are needed:
P(X;=0)=07%1+4+02%05=0.8

P(X;=1)=02

Hence
H(X;) = —(0.8log,(0.8) + 0.210g,(0.2)) = 0.722

H(X;|S); is simple to calculate since it is only non zero for S; = B.
H(X;|S;))=0%0.7+1%02+0%0.07+0%0.03=0.2

I(X;;S;) =0.722 — 0.2 = 0.522
(i 55) [35%]

0.2 ————mmmmmm e 0.3 ——/
0.07 —=—— 0.1 ——/
0.03 ——/

o Q w P

giving the code

A0

B 10
Cc 110
D 111

To calculate the efficiency of the code, the average code word length is needed:
L=07%1402%x24007%x3+4+0.03x3=1.4
The efficiency is then given by

n=1.245/1.4 = 0.8893

If the source were extended to order four, the efficiency of the code should increase and
tend towards unity, since it cannot decrease. The source S contains a probability greater
than 0.5, which will encoded rather inefficiently by an order-one Huffman code. The most



probable event for an order-four code is AAAA which has probability 0.7¢ = 0.24 and is
likely to be encoded with very high efficiency using 2 bits for the 4 symbols. [30%]

(d) If the statistics in the tables do not change but the even X always equals the odd
X, then this implies that S and X both have memory.

In particular, H(X5|X;) = 0.

Hence we know how X, relates to X;, but we do not directly know how S, relates to
S1. So we have to calculate the joint entropy, by reference back to X;, using the mutual
information calculated in part (b).

Hence

H(Sl, SQ,Xl,XQ) = SQ,Xl) since X2 = X1
) + H(Slle) + H(X2|X1) + H(SQ'.X2)

H(S
H(X
H(X1) + (H(S1) = 1(S1; X1)) + 0+ (H(S2) — 1(S2; X2))
7
1

22 + (1.245 — 0.522) + (1.245 — 0.522)

0.
2.16

o
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[20%]



	
	
	
	
	
	
	
	

