PART IIA 2005
3F3: Signal and pattern processing
Principal Assessor: Dr S ] Godsill

Datasheet: None

3F3 Questions
Question 1. The Discrete Time Fourier Transform (DTFT) of a sequence {xx}, k =
0,%£1,%+2...,+00 is given by
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Question 1a Explain why the DTFT is not computable on a digital computer.
Answer. It is impossible to implement because

- the sum is over an infinite number of samples.

- the frequency w is continuous.

Question 1b Consider now the Discrete Fourier Transform (DFT) of {2} given for
n=0,..., N—1by

Xn = e TN (2)

This DFT only provides N spectrum values, whis is insufficient in most applications.
Show how it is possible to compute
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as a function of {X,}.

In practice, we are often only interested in computing X’ (w) at the discrete frequencies
2“7” where n =0,1,...,P—1and P > N. Name and describe an efficient way based on
the DFT to compute these values.

Answer. The Inverse Discrete Fourier Transform yields
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Hence, one has
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In practice, one does not use this formula but the zero-padding technique. A sequence of
length P is created, the NV first elements correspond to {zx} and the remaining ones are
set equal to zero. Then the DFT of this P-length sequence is computed.

Question Ic Assume you are interested in computing the DFTs of two real-valued
sequences {x,} and {yx} of length N (k = 0,1,... ,N — 1). Show how it is possible to
compute these DFTs using the DFT of a single complex-valued signal {z;} of length N
given by

zk = Tk + JYk-

How would this algorithm be implemented practically?
Answer. We know that the DFT is linear, thus

Zn = Xp + Y0

Moreover we have
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We can check easily that the DFT of the conjugate sequence {z}} is equal at frequency
thus
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In practice, the DFT is implemented using the FFT algorithm.



Question 2.

Question 2a [15%)] Describe the backward difference and bilinear transform methods
to convert analog filters to digital filters. Explain why the bilinear transform is usually
favoured.

Answer. In the backward difference method, we set simply

s=T""(1-2z71 Sz=(1-sT)""

where 7' is the sampling period. The problem with this approach is that the left half plane
is mapped into a circle of centre (0.5,0) and radius 0.5. This mapping has the property
that a stable analog filter remains stable in the digital domain but the poles are confined
to a relatively small set of frequencies. It is impossible to design highpass filters with such
an approach.

The bilinear transform is given by

1—z7!
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This transform does map the left half plane into the unit circle. In particular it allows
the user to design highpass filters. The main problem with this approach is it performs a
nonlinear mapping of the phase leading to a distortion of the digital frequency response.
This effect can be compensated partially by prewarping the analogue filter before applying
the bilinear transformation.



1 = {__ <
R, Ry
lxy
~C &
‘(“\\ v
- § S b
(!K’ W’_ {"D '/“/? Ca,_

‘\/\S\M




1\

25

Question 2c [35%] A highpass filter is required with sampling rate 32.20khz. The 3dB
corner frequency is 6.50kHz. We are interested in designing this infinite impulse response
(IIR) digital filter from an analogue prototype given by

1
H(s) = ————.
(s) $24+V2s54+1
Using the lowpass to highpass transformation
Q2
5= —,
s

where €. is the corner frequency, together with the bilinear transform, design the required
digital filter. Determine the zeros and poles of this digital filter.
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Answer. The normalized frequency is given by We = BiZh
6.50 e L ’
We = 27r32_20 = Q. = tan ( 5 ) 0.736.

Combining this and the bilinear transform, we get first the analog highpass filter
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Hence the digital filter has a zero at 1 and poles at 1/2.3575 = 0.424 and -1/2.193 = —0.46.
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Solutions to 3F3 Pattern Processing Questions, 2005

1. Parameter Estimation

(a) Answer should include:

e need to decide on nature/form of the class-conditional distributions;
e mention of generalisation i.e. enough training data to robustly estimate the
model parameters;

Bayes™ decision rule is optimal when:

o the form of class-conditional distributions and prior are known;
o infinite training data is available;
e the global maximum is found.
Since these conditions are rarcly satisfied it is usually reasonable to usce these alter-

native approaches.

(b) Form of log-likelihood

log(p(X|y)) = Zlog(/\f(wi;/aﬁ))
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The ML estimate of the mean will be given by differentiating wrt p and equating to
zero. Thus

9 N
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Equating to zero yields
1
= ; T
(c)(i) The value of the mean will be 1.

(¢)(ii) The Bayes decision boundary will occur when the two log-likelihoods are the
same (equal priors). Thus a point = on the decision boundary will satisfy
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Thus

z—1)2 -
$2 — (Tof)l_ = log(lo())

(¢)(iil) For part (c¢)(ii) the decision boundary needs to occur at about /log(108).
Since the assumed variance of the PDF for class w,y is 1, the same as that of class
wy, the decision boundary will occur half way between the two means. This needs to
be close to 4/log(10%), so an estimate of p which is closer to the Bayes decision (and
hence yield a lower error rate is

“:2\/@ - ‘AL‘(\Q/\

A more accurate estimate is possible by taking into account the second term, this
will yield a slightly larger value (with a fractionally lower error rate).

In practice the question is worded so that provided that a reasoned argument is used
an increase in the value of u is acceptable.
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