PART IIA 2005

3F6: Software engineering and design

Datasheet: None

Principal Assessor: Dr T W Drummond

3F6 Tripos Solutions 2005

T Drummond & P Smith

Solutions to 3F6 Software Engineering and Design questions, 2005

1. Specification, software testing

(a) Defect testing largely checks that the software meets the functional requirements
in the specification—it checks that the software functions in the agreed manner.

(b)

Statistical testing is not concerned with finding defects, but in checking and
quantifying the reliability of the software (e.g rate of failure). Reliability is a
non-functional requirement—it is not concerned with the response of the system
to inputs, but instead with its availability.

i.

ii.

Functional testing checks that the software behaves according to its speci-
fications by providing various inputs and checking the outputs. The struc-
ture of the program is not considered—the software is treated as a black
box which simply has to respond correctly. FEquivalence partitioning is a
means of selecting test data for functional testing (since it is not usually
feasible to try every possible input). Inputs are divided into valid and in-
valid ranges (partitions), and test cases are then chosen which are either
typical values (well within the valid range) or possible error cases (on or
near the boundary).

In this case, invalid inputs would be when a=0 and b is negative (since
0™ = 1/0"™ = oo for positive n), and when a or b are such that the answer
would over- or under-flow the float datatype. Appropriate test cases would
make sure to include these problems, as well as typical examples. For
example, five test cases would be:

a=10 b=2
a=-10 b=-2
a=0 b=-1

a=1000 b=10

a=0.00001 b=-10
Structural testing makes use of access to the source code for the software
to design carefully-targeted test cases and to ensure that all of the paths
through the code is tested. It compares test program behaviour with the
apparent intention of the source code.
The program flow graph for this function is shown in Figure 1. Calculating
the Cyclomatic Compexity:

CC(G) = edges — nodes + 2
—8—T+2
=3

or simply by inspection of the program flow graph, there are three indepen-
dent paths, corresponding to the cases when b is positive, negative or zero.

1

15%)

[20%)

3F6 Tripos Solutions 2005 T Drummond & P Smith

Start

float ans = 1.0;
if(b < 0)

return ans;

while (b > 0)

“IIHHHHII’

Figure 1: Program flow graph for exp () function

If positive, the while loop will be entered; if negative, the if statement is
entered, and then the while loop; and if b=0 then neither of the conditional
parts of the function are entered. Example test cases would therefore be:

a=10 b=-1

a=10 b=0

a=10 b=1 [30%)]

iii. Software inspection examines the source code, without executing the soft-

ware. Software inspection checks for common programming errors, and
compares the source code with the requirements document and design di-
agrams to verify that the source code meets the specifications. Typically,
over 60% of all program errors can be detected by software inspection, so
this is a very useful stage in software verification. [15%)]

(c) There are in fact several input cases which will cause problems in this function.
The main error is when a=0 and b is negative, resulting in an untrapped divide
by zero error. This error should be detected by functional testing (since the
divide-by-zero case is one likely to be included by equivalence partitioning),
and by software inspection (which would check that divide by zero errors were
correctly handled). Structural testing is not guaranteed to find this error since
there is no path to deal with divide by zero that needs testing.

Other inputs which could cause problems are when a and b are sufficiently large
or small that ans overflows or underflows, and the particular case of the maxi-
mum negative number (b=0x10000. . ..0) since with two’s complement integers
this number has no positive equivalent. The case of 0° is also potentially a
problem, since the result is undefined (it could plausibly be either zero or one),

2

3F6 Tripos Solutions 2005 T Drummond & P Smith

but it is generally accepted that the most appropriate answer is 0° = 1, which
is what this function returns.

Examiner’s remarks: This question was about software specification and software
testing. This was a reasonably popular question, and there were some reasonable
answers. Candidates clearly knew the theory behind the various types of software
testing, but they found it more difficult to apply the theory to a concrete answer.
Likewise, whilst most of them correctly identified the error in the function when asked
to do so in the final part of the question, many did not appreciate when answering
the earlier part of the question, partitioning, that the process they went through in
finding the error by eye were similar to the process that was required in that form
of testing, and so they should also have identified that particular error case in that
part of the question as well.

2. Object-oriented software design, concurrent systems, monitors, CORBA

(a)

For easily-maintainable software, it is desirable that it has low coupling and
high coherency. Low coupling means that one software module does not depend
on the specific implementation of another module—i.e. that replacement parts
can be plugged in without breaking other parts of the software. High coherency
means that all the parts in a module are related. The task of a module can then
be easily identified, and modifications to a particular functionality only need to
be made in one place. Errors can also be easily tracked down.

Object-oriented programming groups together program elements into objects,
each of which represents a concept. An object has its own state (data) and
functions, as opposed to function-oriented programming where data and func-
tions are owned and accessible globally. Objects thus naturally provide high
coherency. Objects have two parts: a declared public interface and a hidden
private implementation. Any object which provides the correct interface can
be used in a piece of software, i.e. the implementation should not be impor-
tant, and objects thus have loose coupling. Much modern code is written using
object-oriented design, and the code is in general easier to maintain and the
objects easier to reuse.

Monitors provide mutual exclusion automatically. Only one process thread is
allowed within a monitor object at any one time, so if a member function on an
instance of the monitor has been called, any other call to any function on that
object will be blocked until the previous function call is finished.

Synchronisation is provided using condition variables. If a monitor ob ject wishes
to wait until some other thread signals that a condition is true, it executes the

3

[20%)

[20%)]

3F6 Tripos Solutions 2005 T Drummond & P Smith

cwait (SomeCondition) command, which blocks the current thread and passes
control to the next waiting process. When the event that the first thread was
waiting for occurs, some other thread calls csignal (SomeCondition), which
passes control immediately back to the first thread to continue processing.

Figure 2 shows the monitor object.

A CORBA IDL file simply defines the interface to the object, so needs only be
based on the public interface in the monitor. There is no int data type in
CORBA—instead long (or short) is used. Parameters must also be identified
as either in, out or inout, depending on whether they are read, written to, or
both. Figure 3 shows the IDL file.

To extend a CORBA interface without breaking existing clients, one derives a
new interface from the old one. This new interface will include a function to
return the current number of values on the stack, as shown in Figure 4

To block when the stack is in an invalid state, the throw commands in the
monitor need replacing with cwait commands on relevant condition variables,
here called not_empty and not_full. csignal on not_empty is called every
time an item is added to the stack, and csignal on not_full is called every
time an item is popped from the stack. These can safely be called every time,
since csignal is ignored if no process is waiting. They must be called as the
last thing in the function, since the function immediately exits once csignal is
called. Figure 5 shows the modified monitor.

Examiner’s remarks: This question was about concurrent systems (particularly
monitors) and CORBA. This was the least popular question on the paper, by some
way, but was generally very well answered by those who attempted it. Most candi-
dates showed a good understanding of ob ject-oriented programming and the syntax
of C++, and the use of monitors and CORBA. The 'sting in the tail’, asking them to
use condition variables for synchronisation, caused some difficulties, with a number
of candidates remembering the wrong example from lectures (remembering mutual
exclusion using semaphores instead). There were several candidates who failed to
finish this question, presumably running out of time at the end of the exam.

[15%)
[25%)

[10%]

[10%)

[20%)

3F6 Tripos Solutions 2005

T Drummond & P Smith

monitor Stack

{
private:
const int max_size = 100;
int stack[max_size];
int stackpos;
public:
void push(int a);
void pop(int& a);
};

Stack::Stack() : stackpos(0)
{

by
void Stack: :push(int a)
{
if (stackpos == max_size)
throw StackOverflowError;
stack[stackpos] = a;
stackpos = stackpos + 1;
}
void Stack::pop(int& a)
{
if (stackpos == 0)
throw StackEmptyError;
stackpos = stackpos - 1;
a = stack[stackpos];
}

Figure 2: The Stack monitor object

3F6 Tripos Solutions 2005 T Drummond & P Smith

interface Stack

{
void push(in long a);
void pop(out long a);
+;

Figure 3: CORBA IDL file for the Stack interface

interface Stack

{
void push(in long a);
void pop(out long a);
};

interface ExtendedStack :Stack
{

long size();

};

Figure 4: CORBA IDL file for the Stack interface, and the ExtendedStack interface,
which adds a function to find the size of the stack.

3F6 Tripos Solutions 2005

T Drummond & P Smith

monitor Stack

{

private:
const int max_size = 100;
int stack([max_size];
int stackpos;

condition not_full;
condition not_empty;

public:
void push(int a);
void pop(int& a);
};

Stack::Stack() : stackpos(0)
{
}

void Stack::push(int a)
{
if (stackpos == max_size)
cwait(not_full);

stack[stackpos] = a;
stackpos = stackpos + 1;
csignal (not_empty);

}

void Stack::pop(int& a)
{
if (stackpos == 0)
cwait (not_empty) ;

stackpos = stackpos - 1;
a = stack[stackpos];
csignal (not_full);

Figure 5: The Stack monitor object, modified to block on errors rather than throw excep-

tions.

3F6 Tripos Solutions 2005

T Drummond & P Smith

3. Software design and design patterns

(a) Class Derivation represents an is-a relationship between to classes. An object
instance of the derived class can be treated as an instance of the base class and
can be used wherever one of these is required. The derived class my also add
state and functionality to the class. Polymorphism extends this by permitting
the derived class to have its own implementation of a function that is declared
in the base class.

(b)

The UML class diagram should contain at least the following components. Can-
didates may also have classes for Checkout and Customer. The order method
in Category represents and example of polymorphism.

Supermarket

1

/ *
Section

name: string

1

/ «
StockLine

name: string

1

/ «

0.1

Watchpoint

quantity: int

+notify(stocklevel:int)

Shelf

Product

name: string
price: float
stocklevel: int

Category

torder (p:Product, quanitity:int)

Perishable

+order (p:Product, quani tity:int)

MediumTermStorage

torder (p:Product, quanitity:int)

LongTermStorage

torder (p:Product, quanitity:int)

3F6 Tripos Solutions 2005 T Drummond & P Smith

(c) There are two methods of doing this. It can be achieved either by use of a
decorator pattern:

Product
name: string <

1

price: float 1
stocklevel: int

+get_price(): float
+get_bonus_points(): int

A

— Discount

+get_price(): float
+get_bonus_points(): int

— PointsBonus

+get_price(): float
+get_bonus_points(): int

or by use of a state pattern.

1\
Product > SpecialOffer

name: string
price: float
stocklevel: int

+get_price(): float
+get_bonus_points(): int

A

Normal

+get_price(): float
+get_bonus_points(): int

Discount

t+get_price(): float
+get_bonus_points(): int

PointsBonus

+get_price(): float
+get_bonus_points(): int

Candidates should also identify that Customer needs an attribute for loyalty
points.

Examiner’s remarks: This question was about converting a software specifi-
cation into a design. This was (just) the most popular question on the paper
and was generally well answered. Most candidates showed a good understanding
of software design principles and were able to generate a good UML diagram
showing their design. Better candidates avoided the temptation to introduce
classes for each section of the supermarket (e.g. having a separate class for the
Bakery). Many candidates also identified a good way of answering the final part
although the completeness of the answers varied.

3F6 Tripos Solutions 2005 T Drummond & P Smith

4. Software design and design patterns

(a) There are nine classes present: ControlSystem, Component, Integrator, Differ-
entiator, Gain, Sum, Fuellnjector, Acclerator and Revs. Each ControlSystem
has many Components. Integrator, Differentiator, Gain, Sum, Fuellnjector,
Accelerator and Revs are derived from Component. Integrator, Differentiator,
Gain and Fuellnjector each have one Component as their input. Sum has two
Components as its inputs.

(b) Sequence diagram shown below

10

3F6 Tripos Solutions 2005

T Drummond & P Smith

cs:ControlSystem a:Accelerator d:Differentiator s:Sum f:Fuellnjector
T T T
do_control H_ I |
—_——
compute] 1
I
|
- - - - - -]
compute »f_

!
=

11

3F6 Tripos Solutions 2005

T Drummond & P Smith

(c) The order in which the components are added to the control system does not

matter because they operate by reading outputs cached in the stored_output
attribute. The newly computed outputs only become visible to other compo-
nents after the transfer method is called. This means that the do_control
method must be called three times before any effect from the accelerator pedal
is seen at the Fuellnjector. On the first time, the Accelerator object obtains the
position of the pedal and stores the value in its output attribute. The transfer
method makes this visible at the end of the do control method. On the next
call, this value is seen by the Sum object and only on the subsequent (third)
call to |do_controllis the value seen by the Fuellnjector.

(d) The best way to do this is to use the Abstract Factory pattern. This involves

- creating an abstract factory class (called Car in the diagram below). This has
two subclasses, one for each type of car. The job of the factory classes is to
create the correct sort of Accelerator, Fuellnjector and Revs objects for each

type of car.

Car

tgetAccelerator(): Accelerator
tgetFuellnjector(): FuellInjecton

+getRevs () : Revs

i

TypeA

tgetAccelerator(): Accelerator
+tgetFuellInjector(): Fuellnjectoq

+getRevs () : Revs

<<instantiates>>

Accelerator
+compute ()
AcceleratorA AcceleratorB (<

TypeB

+getAccelerator(): Accelerator
+getFuellnjector(): Fuellnjecto
+getRevs(): Revs

<<instantiates>>

+compute () +compute ()

Fuellnjector

+compute ()

A
[i

<<instantiates>>«_

FuellnjectorA

<<instantiates>>

FuelinjectorB [<-

+compute () +compute ()

<<instantiates>>

Revs

+compute ()

I—_A_I

RevsA RevsB

<<instantiates>>

+compute () +compute ()

Examiner’s remarks: This question was about understanding and manipu-

12

3F6 Tripos Solutions 2005 T Drummond & P Smith

lating an existing software design. The first two parts of the question were well
answered by most candidates, with the majority producing a (mostly) correct
sequence diagram. The third part of the question caused some difficulties, with
may candidates assuming that the system being considered was identical to an
examples sheet question, despite many of these being able to correctly deduce
things from the differences. The fourth part of the question was well answered
by the better candidates who correctly identified a good design pattern to be
applied to the problem.

13

	
	
	
	
	
	
	
	
	
	
	
	
	
	

