PART IIA 2005
3I1: Data structures and algorithms (CST)
Principal Assessor: Dr A Norman Trinity

Datasheet: None

ENGINEERING TRIPOS PARTIIA CRIB

Monday 2 May 2005 2.30 - 4.00

Module 311

DATA STRUCTURES AND ALGORITHMS
Answer all of Section A and two questions from Section B.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in
the right margin.

There are no attachments..

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

(TURN OVER

SECTION A
Attempt all parts of this question

1. You should answer each of the following parts with a short-answer, quoting relevant
results rather than proving them. Give names for algorithms you need to refer to and sketch
methods or justifications of claims you make. Credit will be given for the clarity and
succinctness of answers as well as for basic factual accuracy.

(@) What is a splay-tree and how do you look up data in one?
A splay tree is a binary search tree that is managed in a self-adjusting manner.
Whenever an item is accessed in any way a sequence of rotations is performed to
move that item to the root of the tree. Lookup happens in two phases. The first is
a simple search as in any binary search tree. The second is the rotations to move
the item found to the top.

(b) Name a data-structure suitable for implementing a priority queue, and give an
indication of how much time it should take to remove the top item from it.
A heap. If there are n items in the heap it should take O(log(n)) to remove the top item.

(¢) Give an example of a useful algorithm whose computing time cost can be
characterised as O(n?’).
Eg simple insertion sort is big-O of n to the power 20! We all know it is O(n), but the
nature of big-O notation means that any higher bound will also apply!

(d) Explain briefly what is meant by “amortised” computing cost estimates and
comment why it may sometimes be more realistic than simple worst-case analysis..
Worst case time-per operation when measured and avareged over a long sequence of
operations. It can be useful to allow for algorithms where most individual operations are
fast but occasionally a slow reorganisation is needed (eg splay trees) and because jt
captures the idea that successive operations on a data structure can not be viewed as
independent,

() Giveasetof operations and identities that you would expect to form an
Abstract Data Type for a priority queue.

(CONT.

[10%]

[10%]

[10%]

[10%]

[10%]

make empty queue

add item to queue

test if queue is empty

remove top item, returning its value

is_empty(make empty()) = true

is_empty(add(..)) = false

top item removes is smallest item previously added but not yet removed. and this statement
is messy to formalise!

()~ Suggest circumstances (for instance an application, programming language
being used, performance demands or other constraints) where you would use free-store
allocation based on a Buddy system rather than using Garbage Collection.

When I could not guarantee to find all root-pointers to data I could not use a garbage
collector, so perhaps a case where my implementation language does not have enough
discipline to let me access all roots

(g) Indicate circumstances where Garbage Collection would probably be better

than use of the Buddy system.
GC has perhaps 2 key benefits over Buddy and when one of these truly matters I
will prefer it. (a) a copying GC can guarantee to avoid fragmentation by
recompacting memory and (b) a GC means that the user does not have to worry
about freeing memory blocks, so the system is robust against user errors that
could arise in any explicit return System. Also in the long term and with enough
working memory GC will be faster. I think I will say “whenever it is technically
possible I prefer GC” here.

(h) Perfection in a binary tree would see all leaves at the same height. Red-Black
trees do not achieve perfection, even though they do avoid extremes of failure to balance
the tree. How out of balance can a Red-Black tree get?

The 2-3-4 tree idea that underpins red-black trees has all leaves at the same height. This a
red-black tree has at worst a factor of 2 difference in leaf height.

(1) Describe an algorithm that can find the minimum spanning tree of an arbitrary
graph or show that no such tree exists. You do not have to prove its correctness of
estimate its costs.

Select arbitrary vertex of your graph and make a set U with that as only element. While

(TURN OVER

[10%]

[10%]

[10%]

[10%]

-4 .-

possible identify shortest edge of graph that has one end in U and the other not. Add the

vertex that that defines to U, and the edge to what will become your MST. If at end you

have linked all vertices you have an MST.

Knuth reported that the sequence generated by a; = a;.54 + a;.55 (mod 232) can give a

reasonable sequence of pseudo-random values provided that the first 55 values in the

sequence (which are needed to start things off) are not all even. In what way might the

sequence fail to behave randomly if all the first 55 values are even? [10%)]

All subsequent values will be ever. If in a more extreme way the seed values are all zero
then everything stays zero from then on.

(CONT.

SECTION B

2. How would you sort data in each of the following circumstances? Justify or comment
on your choices of method:

(a) The data is a set of 10 entries in the high-table list for a video-game console, to
be sorted by score. [14%)]

For just 10 values I think that simple insertion will be good enough. A key point to
make here is that since this is only a TINY amount of data performance does not
matter much but simplicity does. It could be that the order in the list changes only
slowly and that too suggests simple insertion.
(b) You have 10 million people to sort based on their age in years. If two people
have the same age it does not matter which order they appear in the output list. [14%)]

The key issue here is that there are only around 100 distinct keys. I would so one
pass counting the number of people in each bucket, then a second pass could
move them to the right place. Noting and exploiting the small number of distint
keys is the issue here.
(¢) You have 10 million values but rather than wanting them totally sorted you
want a sorted list of the 101 values that rank at each percentile in the data. The item at
percentile k will have k% of all the input values less than it, and k will be 0,1....,100. [14%)]

This is median-finding! But there is some fun in that when I partition in a
quicksort-like manner my early partitions can be used for most of the percentiles.
So: start quicksort and thus split the range up until you have chunks each with just
one key value in. At that stage switch to the normal medial-finding variant.

A nice explanation given by one candidates was roughly “use quicksort as per
normal, but keep track of the rank-range of each sub-range you have to recurse
down onto, and if the sub-range will not contain any of the 101 key values you
want do not bother to consider it further”.
(d) You have just 1000 items to sort, but it takes 20 seconds or so to compare any
pair of them. [14%)]

-6 -

So that I strictly minimise the number of comparisons I will use binary insertion
and accept any excess data movement. I might use merge-sort. But in any case
using ONLY n log n comparisons is what matters

(¢) Every second you receive a large file of numbers over the network, and vou
must display the top 100 in descending order. If very occasionally you can not complete
preparing this list of the sorted top 100 on time it does not matter. [14%]

Probablistic median finder based on quicksort to fine the item at rank n-100 was
the answer I had expected, but heapsort is in fact very good if you just want the
top K of the data (and it is guaranteed so solves (f) too)

() As(e) but you need the top 1000 and you will lose your job if the required data
from one set of numbers can not be displayed before the next set of data arrives. [15%)]
Here I think we need to use the guaranteed linear scheme with medians-of-5. Or
Heapsort.
(g) Your data consists of a large file of names. The first (about) 90% of it is already
believed to be in sorted order from last time (but you are not 100% confident about that).
The remaining 10% is new data that has been written onto the end of the original file in a
chaotic unordered state. You want a single file consisting of old and new data all neatly
sorted. [15%]

This seems best solved by splitting the data where it stops being well sorted. Then
use bubble sort on the almost sorted bit (linear cost since nearly sorted already)
and quicksort (probably) on the rest, followed by a merge to put them together.
Simple insertion on the whole lot does not seem sensible.

(CONT.

-7-

3. Consider the message “amanaplanacanalpanamaQ”, where the “Q” signifies the
end of the message. Observe for instance that the letter “a” occurs 10 times.

(a) Based on the frequencies of letters used in the message, show how to
construct a Huffman code that will compress it well. In your code how many bits will be
used to encode the letters “a” and “()"

There are 22 chars in total

AAAAAAAAAA 10 vl 1
MM 2 sl 1100
NNNN 4 t1 111
PP 2 s2 1101
LL 2 r2 101
C 1 gl 1000
Eof 1 g2 1001
C/Eof 2 q ri

g/L 4 r ul

M/P 4 S t2

N/s 8§ t u2

r/t 12 u V2

A/u 22 v

So “a” encodes as 1 bit and omega as 4 bits. On paper I would draw this as a
decode tree. A Proper answer should explain how this is obtained by at each
stage combining the two symbols with lowest frequencies. Reducing the
frequencies to fractions or decimals is not needed and not helpful!

(b) What information does a decoder need in order to expand a message based
on your Huffman code? You do not need to discuss how it will obtain this information.
It needs the code-lengths associated with each symbol. It can then deduce bit-
codes for them! This perhaps calls for a note that you do not need the initial
frequencies of symbols. And given the code-length data there may be many
different detailed codings available, but the two ends of the transmission can
both sort out the exact coding based on lengths and thus make compatible
choices.

(¢) Huffman coding maps each character of its input onto as few bits as it can.
How many bits will it take to pack the first four characters of the sample message here,
and what will be the exact sequence of bits that it uses?

(TURN OVER

[25%]

[25%]

[25%]

-8-

1.1110.1.111. where the dots show where symbols end but are not part of
what would be transmitted. The credit for this really belongs somewhat with
the previous parts where you have derived what is needed to do it!

(d) How many bits would Lempel-Zif compression need to send the first four

characters of this message, supposing that it knew in advance that it was having to deal
with messages based on an alphabet of 6 characters plus an end of file marker? Explain
why Huffman that reduces the number of bits per symbol sent and L-Z that increases it
can both eventually lead to good compression.
LZ would start with 3-bit codes for the first char or 2 but would then need to
switch to 4-bit ones, so it will use around 3+3+4+4 =14 bits for these 4 chars
rather than the 8 used by Huffman. LZ eventually starts to pay back because
one symbol that it sends may correspond to many input symbols, so the fact
that it needs more bits per item that it transmits is not a problem — whatever it
seems for the first few chars when its compression scheme has not built up
enough info to start paying off. Note also that Huffman needs a priori frequency
data which must be transmitted to the recipient somehow, LZ does not need
any additional data so you should expect the first few chars of a LZ message
not to compress or even to expand since it uses them to build up data that let
later bits compress well.

(CONT.

[25%]

-9.

A DVD can store around 4 Gbytes of information. You are charged with designing a
way of storing a large dictionary on a DVD. There will be around 500,000 words
included and each word has an associated description that may be several thousand
characters long. You may suppose that data can be read from the DVD at around 5
Mbytes per second. but a “seek” to a new location on the DVD takes around a fifth of a
second.

(@) Explain what benefit Larsen’s Dynamic Hashing could have for organising
the data on your disc. Describe how you would organise the DVD into blocks, how you
would create the data in the form to be written to it and how the program to read the
DVD would locate desired dictionary entries. Estimate the time it would take to look up
a given word on your dictionary-disc.

With Larsen you only do exactly one disc transfer per fetch. With the
parameters given I might view the DVD as having say 2 Mbyte blocks (reading
a block then has most of its time in seek which is unavoidable). If T am using
most of the disc there are then around 2000 such blocks,

I will describe lookup first. Read from a fixed place on the disc a 2000-entry
table of signatures. Take the word to lookup and produce a a hash and
signature values, H and S. Reduce H to 1-2000. Check the signature table at
that location, and if S < sigtable[H] then just read block H and the data will be
there. Otherwise compute a subsequent pair of (H,S) values and keep going
until success. You may need many hash calculations but only one disc access.

To add data keep a hard disc image of what will become the DVD. To add new
data lookup as before and if there is space in the block so identified just put the
data there. Else eject the item in that block with extremal signature and adjust
sigtable so that next time it will be detected as not there. Now try to re-insert
the ejected data. Unless the disc is very nearly full you should succeed after a
few tries.

(b) As an alternative to Larsen’s method, discuss B-trees. Explain and estimate
the same things you did in section (@).
B-trees are trees with huge but variable fan-out such that the height of the tree
is uniform. In this case if I use 2 Mbyte blocks and so have only 2000 blocks I
think I can make the top-level block have fan-out 2000 and hence my B-tree
will only have 2 levels! I can then keep the top block in memory always and
what had started by looking as if it was going to be a complicated scheme with
greater cost than Larsen in this case seems simple and as fast!!!!!

[35%]

[35%]

-10 -

(¢) Although in the short term your dictionary will always be accessed directly
off its DVD, you imagine that in the not too medium-term future your users will have
enough disc space that they copy all the data from your DVD onto their hard disc to get
faster access to it. At that stage you will offer a service of network-delivered corrections
and updates. In the light of this and considering any effect that might arise as your
dictionary grows so that it almost totally fills the DVD, discuss the relative merits of the
two approaches. ' [30%)

For the parameters given I think that B-trees on the DVD seem good and that
would make updating on hard disc much easier. But on hard disc I might want
to move to a much smaller block size and hence eg B-trees of depth 2 not 1 —
that will be easy. The scatterdness of Larsen will not be good for use on a hard
disc shared with anything else.

END OF PAPER

(CONT.

	
	
	
	
	
	
	
	
	
	

