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1 The motion of a rigid body is described by its linear momentum p and its moment
of momentum Ap. The body is subject to an external force F () and to an external

couple QP(C) . Moments are taken about a general moving point P whose motion is

described by the position vector rp .

(a) Beginning with Newton’s laws for a particle, derive the data sheet results for
the motion of a rigid body:

) F®=p and [25%]
.. (e) _ h . °
(i) QOp ' =hpt+ipxp. [50%]

(b) Show that a special result holds when P coincides at all times with the centre
of mass of the body. [25%]

2 (a) A uniform circular plate of mass m and radius a lies in the x-y plane and
has its centre at the origin O. Two particles, each of mass m/2, are attached to the plate
at (0.6a, 0.8a, 0) and (—0.6a, —0.8a, 0). Find:

(i) the inertia matrix at O referred to the x-y-z reference frame; [25%)]

(i1) the principal moments of inertia and the directions of the principal axes. [25%)]

(b) A solid cube of mass m has edges of length 2a. The cube is centred at O
with its faces parallel with the x-y, y-z and x-z planes. Two particles, each of mass m/2,
are attached to the cube at (a, a/2, a/2) and (-a, —a/2, —a/2) .

Find the principal moments of inertia and the directions of the principal axes. [50%]
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3  Arotor of mass m andradius a spins freely on a shaft BG. The centre of mass
of the rotor is at G. The shaft is fixed at B to a light string OB of length b as shown in
Fig. 1. The string is fixed to the ceiling at O. The distance BG is equal to the rotor
radius a and BG is aligned with the axis of the rotor. The rotor is spinning at a constant
fast rate @ and its polar moment of inertia can be taken as ma*/2.

In steady-state precession the angle a between BG and the horizontal and the
angle £ between OB and the vertical are both constant as shown in the figure. The
plane OBG remains vertical and rotates at a steady rate €2

(a) By drawing a free-body diagram of the shaft and rotor:

(i) find the tension in the string in terms of m, g and S, [20%)]
2

(i) show that the string angle = —22
g-bQ

(b) In a particular demonstration the string length & 1s chosen to be equal to
g/Qz. What might be observed in such a demonstration? Show how you would
compute the string angle S without making small-angle approximations. [30%]

when o and S are small. [20%)]

(c) Use the gyroscope equations to find an expression for the precession rate 2
interms of g, a and w. [30%]
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4 A vehicle of mass m is free to roll without friction on a horizontal surface. A tall
mast, also of mass -m, is fixed to the vehicle through a frictionless pivot at A as shown
in Fig. 2. The mast may be modelled as a uniform rigid rod of length 2a. A torsional
spring of stiffness 4 1is fitted at A between the mast and the vehicle. The horizontal
position of the vehicle is x and the angle of tilt of the mast from the vertical is @ as
shown in the figure. The spring is chosen to be sufficiently stiff so that there is a stable
equilibrium at 8=0.

(a) Find expressions for the kinetic energy and potential energy of the vehicle
and its mast. [30%]

(b) For small vibration of the vehicle and mast about their equilibrium positions,
find the mass and stiffness matrices. [30%]

(c) Find the two natural frequencies of small vibration and the corresponding
mode shapes. [30%]

(d) What is the minimum value of the spring stiffness k& required to achieve a
stable equilibrium at € =07 [10%]
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5 A wedge-shaped trolley of mass m, shown in Fig. 3, is constrained to move
without friction on the surface of a horizontal table. A uniform solid cylinder, also of
mass m, is free to roll without slip on the inclined surface of the wedge. The radius of
the cylinder is » and the angle of the wedge is « as shown in the figure. A horizontal
force f 1s applied to the trolley as shown. Generalized coordinates used to describe the
motion of the trolley and the cylinder are x, the position of the trolley, and 6, the
rotation of the cylinder. Do not assume that x and € are small.

(a) What are the generalized forces corresponding to coordinates x and &7
(b) Find expressions for the potential and kinetic energy of the system.
(¢) Use Lagrange’s equation to obtain equations of motion for the system.
(d) Use your equations to determine:

(1) the force f required to keep & constant;

(1) the motion of the trolley in the absence of any applied force f when
the cylinder and trolley are released from rest.

Fig. 3

END OF PAPER
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Part IIA Data sheet S32
Module 3C5 Dynamics
Module 3C6 Vibration

Dynamics in three dimensions
Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

ap _
3 =F©

where p = M vg, M is the total mass, vg is the velocity of the centre of mass and F(€) the
total external force applied to the system.
(b) Moment of momentum about a general point P
Q©® =(rg-rp)xp +hg
= I:lp + I"p Xp
where Q(©) is the total moment of external forces about P. Here, 2p and hg are the
moments of momentum about P and G respectively, so that for example

hp = Z(ri —rp) X mir;

14

=hg+(rg—rp) Xp
where the summation is over all the mass particles making up the system.

(c) For arigid body rotating with angular velocity w about a fixed point P at the origin of
coordinates

hp = er(a)xr)dm =1lw

where the integral is taken over the volume of the body, and where

A -F -E Wx X
I=[-FB -D}, o=| o | r=[yJ,
-E-D C b4
and A= J’(_v2 +z2)dm B= J‘(z2 + x2)dm C= J’()c2 +y2)dm
D=Jyz dm E=J‘zxdm F = |xy dm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity (2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p +Qxp=F@)
where the time derivative is evaluated in the moving reference frame.
When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.

Application of the general formula needs an extra term unless the origin of the frame is
fixed.

3C5 /3C6 data sheet 1 HEMH/RSL/DC/JW 2003
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Aw-B-CO)wmw = 01
Ban-(C-A)mz oy = O
Caz-(A-B)wwp = 03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [®;, @, as] and
the moment about P of external forces is Q = [Q1, 02, O3] using axes aligned with the
principal axes of inertia of the body at P.
(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
A -(A%-Cw3) 2 = 0
A+AB-Com) 2 = 0
Caz = 03
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w;, @, w3] and
the moment about P of external forces is Q = (O3, U2, O3] using axes such that w3 and
O3 are aligned with the symmetry axis of the body. The reference frame (not fixed in the
body) rotates with angular velocity Q= [€2;, {2, {] with 21=w; and =wy.

Lagrange’s equations

For a holonomic system with generalised coordinates g;

where T 1is the total kinetic energy, V is the total potential energy, and Q; are the non-
conservative generalised forces.

Rayleigh’s principle for small vibrations

4

The “Rayleigh quotient” for a discrete system is Z =4 - 2 where g is the vector of

7 Mg
generalised coordinates, M is the mass matrix and X is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on pS.

If this quantity is evaluated with any vector g, the result will be

(1) =the smallest squared frequency;

(2) <the largest squared frequency;

(3) a good approximation to a)k2 if qis an approximation to ulk).

(Formally, —‘%is stationary near each mode.)

3C5 / 3C6 data sheet
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VIBRATION MODES AND RESPONSE

Discrete systems
1. The natural frequencies w, and

corresponding mode shape vectors L_t(n)
satisfy

Ku(n) - ZMu(n)

where the M (mass matrix) and K (stiffness
matrix) are both symmetric and positive
definite.

2. Kinetic energy

7=l
2

3. Orthogonality and normalisation

u(j)fMum:{O’ j#k
B - 1, j=k
y_(j)’Kg(k)z{oé J_#k

®,, j=k

4. General response

The general response of the system can be
written as a sum of modal responses

g(t)=>Y a,(t)u™
n

where g is the vector of generalised
coordinates and a,, gives the “amount” of the
nth mode.

5. Transfer function

For (generalised) force F at frequency @,
applied at point (or generalised coordinate) j,
and response g measured at point (or
generalised coordinate) k the transfer
function is

(n), (n)
. q u u,
H(J,k’co):———: _1_7_/\_?

F o, -0

(with no damping), or

3C5 / 3C6 data sheet

Continuous systems
The natural frequencies w, and mode shapes

u, (x) are found by solving the appropriate

differential equation (see p5) and boundary
conditions, assuming harmonic time
dependence.

T:%Jazdm

where the integral is with respect to mass
(similar to moments and products of inertia).

0, Jj=#k

Juj(x)uk(x)dm :{1, =k

The general response of the system can be
written as a sum of modal responses

w(x,t) = Zan(t) u, (x)

where w(x,?) is the displacement and a,,
gives the “amount” of the nth mode.

For force F' at frequency @ applied at point
x, and response w measured at point y, the
transfer function is

_zu (X)) u, (v)

_a)"'

H(x,y,0)=

(with no damping), or

HEMH/RSL/DC/IW 2003



.(n)uk(n)

0,2 + 2iww,s, -

Ok@——~2

(with small dampmg) where the damping
factor {, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

6. Pattern of antiresonances

For a system with well-separated resonances

(low modal overlap), if the factor u"u, "

has the same sign for two adjacent resonances
then the transfer function will have an
antiresonance between the two peaks. If it
has opposite sign, there will be no
antiresonance.

7. Impulse response

For a unit impulse applied at 7 = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

OO

g(j.k,1) = sin w,t

n n

(with no damping), or

(n),, (n)

u 4 -

g(j.k,1) = —j—ﬁl—‘——sin Wyt e @nln!
n n

(with small damping).

8. Step response

For a unit step force applied at ¢ = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) & is
h(j,k,t) = Zuj(")uk(") [1 — COS COnI]
n
(with no damping), or
h(j,k,t) = Zuj(”)uk(”) [1 — Ccos W)t e—w"g”t]
n

(with small damping).

3C5 / 3C6 data sheet 4

Uy, (%) tn(y)
@,% + 2i0w,s, -

H(x,y,0)=—= Z
(with small dampmg) where the damping
factor {, is as in the Mechanics Data Book

n

for one-degree-of-freedom systems.

2

For a system with low modal overlap, if the
factor u,(x) u,(y) has the same sign for two

adjacent resonances then the transfer function
will have an antiresonance between the two
peaks. If it has opposite sign, there wili be
no antiresonance.

For a unit impulse applied at r = 0 at point x,
the response at point y is

)zzﬁn_&‘lﬂzl

sin @t
a)ll

g(x,y.2
n

(with no damping), or

sin @, ¢ e~ ©nbn

): Zuy‘[(x)un(y)

@
n n

g(x, v,

(with small damping).

For a unit step force applied at 7 = 0 at point
x, the response at point y is

x y, Zu,,(x) (y) 1 CcCos@ t]

(with no dampmg)._ or

h(t) = Zun.(x) uy(y) [1 —cosw,t e—wnCnt}
n

(with small damping).

HEMH/RSL/DC/TW 2003
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Governing equations for continuous systems

Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,t), applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
9w Pw 1 ow )2 1 (Qw)z
m—s—P—= = f(x,t V==P}| — | dx T=—m||l—| dx

It? o2 e 2 '[ ( ox 2 J ot

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius a, internal radius & if shaft is hollow, angular
displacement 6(x,t), applied torque f(x,z) per unit length.

Polar moment of area is J = (7 / 2)((14 - b4).

Equation of motion Potential energ Kinetic energy

0 3% 1 (962 _1_r(28Y
pI =7 =Gl = f(xD) V_EGJJ(E;j dx T—Epjj(b?) dx

Axial vibration of a rod or column

Young’s modulus E, density p, cross-sectional area A, axial displacement w(x,t), applied
axial force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
Pw  Pw ! (aw)z 1 (8w)2
A —-EA = ,t V=—FEA||l — | dx T==pAl| — | dx
PAGE T HAGE I A% P45

Bending vibration of an Euler beam

Young’s modulus E, density p, cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,?), applied transverse force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2
w 4w 1 9w 1 (QW )2
A + EI = .t V==FEI|| — | d T=—=pAl| — | dx
AT TEGE T 2P| 57 ) & o) &

Note that values of I can be found in the Mechanics Data Book.

3C5 / 3C6 data sheet 5 HEMH/RSL/DC/IW 2003
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Answers
1. (b) Q(‘“ = él’

089 -048 0
2. (a) () -048 061 0 |ma’
0 0 1.5
(i1) 0.25ma*, 1.25ma*, 1.5ma’, directions aligned with particles, perpendicular to

line of particles and perpendicular to plate respectively.
(b) AAC = 13md’/6 , 13ma*l6 , 2ma*/3 , directions of A are anywhere perpendicular to
the line of particles, and C is aligned with the line of particles.

3. (a) (1) mg/cosp
(b) steady-state Sclose to 772
(¢) 2glaw for fast spin

4. (a) T =mx’ + max6cos0 + 2ma’d’ V=1k0’ +mga(cos@—1)
2m  ma 0 0 |
b)) M= s s K=
ma Sma’ 0 k-mga

(©) o = 0, rigid body translation, {x,6} = {1,0}

(k — mga), modeshape {x,8} = {a, -2}

=

Sma’

() k> mga
5. @ O-f Q=0 |
(b) T =mx’ + max6cosa +3ima’6’ V =-mgafsina
(©) 2m¥ +mabcosa=f Xcosa+3ab=gsina
(d (i) 2mgtana (i) x=82OE
cos”a—3
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