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1 A vertical elastic column of length L, cross-sectional area 4, Young’s modulus
E and density p is supported at its base on a spring of stiffness K, which rests on a

rigid foundation as shown in Fig. 1. The top of the column is unconstrained. The axial
displacement at distance x from the base and time ¢ is w(x, ).

(a) Write down the differential equation governing free axial vibration of the
column, and give the boundary conditions appropriate to the two ends of the column. [25%]

(b) Show that the natural frequencies @ are the roots of the equation

oL Kc
tan — =
¢ Fdo
where ¢ is a constant that you should define. [25%]

(c) Sketch a graphical solution of this equation, and sketch the mode shapes
corresponding to the first three natural frequencies. [25%]

(d) Discuss what happens to the solution from part (c) in the limits
i K->0
(i) K >
and explain the physical interpretation of these limiting cases. [25%]
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2 A cantilever beam has length L, bending rigidity E/ and mass per unit length m.

(a) Use dimensional analysis to show that any particular natural frequency @,
must satisfy

o, =

EI
m

S

where A,, is a dimensionless constant.

(b) Write down the differential equation and boundary conditions relevant to
bending vibration of the cantilever beam. Outline the method by which these equations
can be used to find the natural frequencies. Fully detailed calculations are not needed
but you should explain enough to show that the result is consistent with the answer to
part (a).

(c) Sketch the first three mode shapes of the beam.

(d) Two identical beams of the kind investigated above are connected together
by a rigid, massless link joining the tips of the two beams, as illustrated in Fig. 2. The
link is freely hinged to each beam. Without detailed calculations, sketch the first four
mode shapes of this coupled system in the order of their natural frequencies, assuming
that the vibration of the beams is confined to the plane of the diagram. Explain briefly
- how this frequency order can be justified.
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3 Three masses m, m and M are connected together and to a fixed support by

four springs of stiffness k& as shown in Fig. 3. Each mass can move in the horizontal
direction only, without rotation. The displacements from equilibrium are denoted x;,

xy and y as shown.

(a) Write an expression for the kinetic energy and show that the potential
energy is

V=k( 12+x% +y? —x,y—xzy).

(b) Sketch the mode shapes and write down estimates of the natural frequencies
for the cases:

i mM<<1

(i) m/M >>1.

For each case state which one of these frequencies is exact.
(c) For the case in (b)(i) use Rayleigh’s quotient with the mode shape

(1, %2, NT=(1,1,)T to find an exact expression for the remaining two natural
frequencies. Confirm that these frequencies are consistent with your estimates in

part (b).
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4.  Vibration of a three-wheeled ‘economy’ vehicle can be modelled as shown in
Fig. 4. A light, rigid, triangular frame of length 4a and width 4b is supported at its
corners by three identical springs of stiffness k, resting on a flat, rigid road surface.
The mass distribution can be modelled by three identical lumped masses m, located at
the positions shown. Small vibration of the system is described by the three generalised
coordinates z, 6, ¢ which are the vertical displacement, ‘roll’ and ‘pitch’ rotations
about the mid-lines of the frame.

(@ Derive expressions for the potential and kinetic energies, about the position
of static equilibrium and hence show that the mass and stiffness matrices are

3 0 —-ajz 3 0 -2a|z
[M]=m| 0 26> 0 | and [K]=K O 8% 0 |6.
—a 0 3a? ¢ —2a 0 124° ]

(b) One vibration mode can be deduced without calculation. Describe it and
give its natural frequency. Find the remaining two vibration modes and their natural
frequencies. Sketch these two mode shapes and show the nodal points.

(c) Without further calculations, sketch the amplitude (on a dB scale) of the
transfer function for a displacement at the point B in response to a vertical harmonic
force applied to point 4.

Fig. 4
END OF PAPER
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Part ITA Data sheet S32
Module 3CS Dynamics
Module 3C6 Vibration

Dynamics in three dimensions

Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

(c)

d-L;: F(©)

where p = M vg. M is the total mass, vg is the velocity of the centre of mass and F(€) the
total external force applied to the system.

Moment of momentum about a general point P
Q) = (rg-rp) xp + hg
= l:lp + f‘p Xp
where O(©) is the total moment of external forces about P. Here, hp and A are the
moments of momentum about P and G respectively, so that for example

hp = Z()‘,’ - )“p) X m,‘l",-
[

=hg+(rg—rp)xp
where the summation is over all the mass particles making up the system.

For a rigid body rotating with angular velocity @ about a fixed point P at the origin of
coordinates

hp= frx(@xrydm = T

where the integral is taken over the volume of the body, and where

A -F -E Wx X
I:[:-FB -DJ, W= a)y s r:{y}
-E-D C b4
and A= j(_vz +z2)dm B= _“(z2 + x2)dm C= J>(x2 + y2)dm
D= J yz dm E =sz dm F = |xy dm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity (2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p+Qxp=F©
where the time derivative is evaluated in the moving reference frame.
When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.
Application of the general formula needs an extra term unless the origin of the frame is
fixed.

3C5/3C6 data sheet 1 HEMH/RSL/DC/JW 2003



UNIVERSITY OF
CAMBRIDGE

Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Aw-B-C)wmws = Q)
Bap-(C-A)wzw) = 07
Caz-(A-B)ywrwp = 03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @w = [®;, w», w3] and
the moment about P of external forces is Q = [Q1, O2. O3] using axes aligned with the
principal axes of inertia of the body at P.
(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations”):
AQ-(AQ-Cw) 2 = 0
AD+AB-Cwn) ) = Oy
Cas = 03
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is w= [w;, @y, @3] and
the moment about P of external forces is Q = [Q1, Q2. O3] using axes such that @3 and
Qs are aligned with the symmetry axis of the body. The reference frame (not fixed in the
body) rotates with angular velocity Q= [, £, £3] with Q)=w; and QHr=wy.

Lagrange’s equations

For a holonomic system with generalised coordinates g;

gz,
at\ og;) g dgi

where T is the total kinetic energy, V is the total potential energy. and (; are the non-
conservative generalised forces.

Rayleigh’s principle for small vibrations

4

. . . .V _gKqg .
The “Rayleigh quotient” for a discrete system is = = =—= where ¢ is the vector of

g Mg
generalised coordinates, M is the mass matrix and X 1s the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p35.

If this quantity is evaluated with any vector g, the result will be

(1) 2 the smallest squared frequency;

(2) <the largest squared frequency;

(3) a good approximation to a)k2 if gis an approximation to g(k ).

(Formally, -;is stationary near each mode.)

|8
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VIBRATION MODES AND RESPONSE

Discrete systems
1. The natural frequencies ®,, and

corresponding mode shape vectors g(" )
satisfy

KZ(H) — wHZMg(n)

where the M (mass matrix) and K (stiffness
matrix) are both symmetric and positive
definite.

2. Kinetic energy

T=Lima
2

3. Orthogonality and normalisation

u(j)[Mu(k) :{O’ j‘.¢k
- B l, j=k
L) 0 _{ 0. J=k

Wp, J=k

4. General response

The general response of the system can be
written as a sum of modal responses

g =Y a,(1)u™

where g is the vector of generalised
coordinates and a,, gives the “amount” of the
nth mode.

5. Transfer function

For (generalised) force F at frequency w,
applied at point (or generalised coordinate) J,
and response g measured at point (or
generalised coordinate) k the transfer
function is

1)y ()

J
2 2

. q
H(],k,a)):Fzzw P
n

n

(with no damping), or

3C5 7/ 3C6 data sheet

Continuous systems

The natural frequencies @, and mode shapes
u,, (x) are found by solving the appropriate

differential equation (see p5) and boundary
conditions, assuming harmonic time
dependence.

.o
T = Eju dm

where the integral is with respect to mass
(similar to moments and products of inertia).

J#k

0,
(XN u(xydm=<
ju](xv e () dm {1, =k

The general response of the system can be
written as a sum of modal responses

w(x,1)= Zan(z) Uy, (x)
n
where w(x,?) is the displacement and a,,
gives the “amount” of the nth mode.

For force F at frequency w applied at point
x, and response w measured at point y, the
transfer function is

— Zun(x) “n(.\")

2
W, — w*

n

(with no damping), or

HEMH/RSL/DC/JW 2003
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g ()

w,, +2zwa),,Cn

H(jk )=

(with small dampmg) where the damping
factor , is as in the Mechanics Data Book

n

for one-degree-of-freedom systems.

2

6. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor u,", "’
has the same sign for two adjacent resonances
then the transfer function will have an
antiresonance between the two peaks. If it
has opposite sign, there will be no
antiresonance.

7. Impulse response

For a unit impulse applied at 7 = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

HOME

g(jkr)=> sinw, 1

a)ll

n
(with no damping), or
(n),, (n)
. Ut Uy . -

g(.]’k,[) ~ 2 J sinc, 1 e wngnf

0]

n n
(with small damping).
8. Step response

For a unit step force applied at t = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

h(j.k,t)= Zu(") n [l—cosa) t]

(with no damme), or

h(j.k,t) Zu (1), (") [l—cosw t e Onbn! ]
n

(with small damping).

3C5 /3C6 data sheet 4

un(x) u ()’)
co,, +2iww,C, -

=53

(with small dampmg) where the damping
factor {, is as in the Mechanics Data Book

for one-degree-of-freedom systems.

H(x,y,w e

For a system with low modal overlap, if the
factor u,(x) u,(y) has the same sign for two
adjacent resonances then the transfer function
will have an antiresonance between the two
peaks. If 1t has opposite sign. there will be
no antiresonance.

For a unit impulse applied at r = 0 at point x.
the response at point y 1s

(X)) u,(y) .
Z——————-”( : ”(')sma)”z

glx,v.1) =
wll

H
(with no damping). or
(X)), (y) . —.
g(x’y’[) =~ z_l_z(____n_{.'...). Sin a)”[ e wll‘:l?’
a)ll

n

(with small damping).

For a unit step force applied at =0 at point
x, the response at point y is

Z"‘”()‘) u,(y) [ —COoSs wnt]

hxvt

(with no damping). or

h(t) = Zun(,\’) U, (V) [] —Ccos W, e-w,,é’,zf]

n

(with small damping).
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Governing equations for continuous systems
Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,?), applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2 2
: ) . ] 8 )
ma ; - 8 . = f(x.1) V:—I—PJ'(QP—) dx T:—m"-[—w) dx
ot nZ 2 ox 2 ot

Torsional vibration of a circular shaft

Shear modulus G, density p. external radius a, internal radius & if shaft is hollow, angular
displacement 6(x,r), applied torque f(x,z) per unit length.

Polar moment of area is J = (7[/2)(414 - b4).

Equation of motion Potential eneroy Kinetic energy
9%6 3? 9 ] 96\ I )7
J———GJ = h V==GJ d T==pJ||l—| &
Pl gz =i 2uj(au } 2pj(az !

Axial vibration of a rod or column

Young’s modulus E, density p. cross-sectional area A, axial displacement w(x.r), applied
axial force f(x,r) per unit length.

Equation of motion Potential energy Kinetic eneroy
Pw . Pw 1 (awjz 1 ( w)

= t V=—FA|| —| dx T=—=pAl| — | dx
o2 HAgE T 254l 5 P45

Bending vibration of an Euler beam

Young’s modulus E, density p, cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,?), applied transverse force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
w tw 8 w I ( ow )2
A + El — = 1 V——EI dx T==pAl| — | dx
pA—T+ EI== = [(x1) |57 ) SpAl| 5 | @

Note that values of I can be found in the Mechanics Data Book.
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