ENGINEERING TRIPOS PART IIA

Thursday 12 May 2005 2.30 to 4

Module 3F6

SOFTWARE ENGINEERING AND DESIGN

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

There are no attachments.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

(TURN OVER



1 (a)  Software testing is concerned with verifying that a piece of software
conforms to its specifications. What is the difference between defect testing and
statistical testing? Do these verify conformance with the software’s functional or

non-functional requirements?

(b) Figure 1 shows a function to calculate the value of a real-valued number

raised to an integer power, i.e. exp(a,b) = a’.

(1)  What is functional (black-box) testing, and how does it make use of
equivalance partitioning? Suggest five appropriate test cases (i.e. values

of a and b) to test the behaviour of the function given in Fig. 1.

(i1)  What is structural (white-box) testing? Draw a program flow graph
for the function of Fig. 1, and suggest a minimal set of test cases which

would ensure that every path has been covered.

(i) What is software inspection (static testing), and how is it a form
of software verification? How useful is it as a means of detecting program

errors?

(c) As written, the function will fail on some inputs. What is the failure and

which of the three methods described in section (b) are likely to detect this failure?

(cont.

[15%]

120%)

(30%]

[15%]

[20%]



float exp(float a, int b)

{

float ans = 1.0;
if(b < 0)
{

b = -b;

a 1.0 / a;

}
while(b > 0)

{
ans = ans * a;
b=>b-1;

}

return ans;

Fig. 1

(TURN OVER



2 Figure 2 shows some C++ code, written in a function-oriented style, to push
(add) and pop (remove) integers stored on a first-in-last-out stack. It is desired to
make this code (i) object-oriented and (ii) able to cope with concurrent operations
on the stack. Assume that the two exceptions used in Fig. 2 have already been

defined elsewhere.

(a) Considering the issues of coupling and coherence, discuss how object-

oriented programming helps the writing of code which is easy to maintain.

(b)  Monitors are an object-oriented construction which provide a good so-
lution to concurrency problems. Describe how monitors can provide both mutual

exclusion and synchronisation.

(c) Rewrite the code of Fig. 2 as a monitor object, showing both the monitor
declaration and the member function definitions. (Assume that the monitor key-
word is available in this version of C++, and, apart from the concurrency support

it provides, is used in the same way as class.)

(d) It is now necessary to make the stack object available to other users
across a network, using CORBA. Write a CORBA IDL file to define the interface

to your monitor object.

(e) As it stands, the monitor object will throw exceptions if the user attempts
to push a value onto a full stack, or pop a value from an empty stack. It is suggested
that the CORBA interface should be extended to allow the clients to query the
current number of values on the stack. Show how the IDL file can be modified to

do this, without breaking any existing clients.

(f) It is now decided that, instead of throwing exceptions, the push and pop
member functions should block until the stack is in a valid state. Modify the push

and pop member functions to achieve this, making use of condition variables.

(cont.

120%)]

[15%)

125%)

[10%]

[10%)

120%]



const int max_size = 100;
int stack[max_size];
int stackpos = 0;

void push(int a)

{
if (stackpos == max_size)
throw StackOverflowError;
stack[stackpos] = a;
stackpos = stackpos + 1;
}
void pop(int& a)
{
if (stackpos == 0)
throw StackEmptyError;
stackpos = stackpos - 1;
a = stack[stackpos];
}

Fig. 2

(TURN OVER



3 (a)  Object oriented design permits the use of class derivation and polymor-

phism (virtual functions). Give a brief description of each of these facilities.

(b) A supermarket is commissioning a software system to perform stock con-

trol. Part of the specification for the software reads as follows:

Specification: The supermarket has many sections (e.g. bakery, diary, fruit
& vegetables etc.). Each section controls several stock lines (e.g. the bakery has a
bread stock line and a cake stock line). Each stock line contains several products
(e.g. the bread stock line has baguette, high-tin, bloomer etc.). The system must
keep track of how many items of each product type are in the supermarket and
their prices. Products fall into one of the following categories (frozen, refrigerated
or durable). The supermarket has a number of shelves. Each product is kept on
a particular shelf. When a customer purchases their products at the checkout, the
system must update its record of the number of each product on the shelves. A
watchpoint can be placed on the stock level of a product. When the number of
items of a product falls below a level specified by the watchpoint, an order is sent to
the distribution centre for replacement of that item. Orders for different categories
of products must be placed differently (e.g. an order for a frozen product must be

made to a different distribution centre from an order for a durable product).

Using good design principles, draw a UML class diagram which shows the
main classes that will be needed for this software, the relationships between these
classes and the main attributes and operations that they should support. Identify
an example of polymorphism used in your design. You do not need to give any

pseudocode in your answer.

(cont.

20%]

[55%)



(¢)  The supermarket now wishes to extend the software to allow special
offers on various products. There are two kinds of special offers: the first gives a
discount on the price of the product, while the second gives additional lovalty points

to the customer.

Show what changes will be required to the software in order to support this
additional functionality. drawing any modified parts of yvour class diagram and iden-

tifving any design patterns usec.

(TURN OVER

s
ot

—



4 Figure 3 shows a UML class diagram for software which provides a control

system for a car.

(a) Identify the classes present and the relationships between them. You do

not need to describe any attributes or operations.

(b) Figure 4 shows C++ code that creates a simple control system for the
fuel injector of a car. Draw a sequence diagram which shows what happens when

the do_control method is called.

(c) If the components were added to the control system in a different order,
would the behaviour of the control system be affected? If the driver makes a change
to the position of the accelerator pedal, how many times must the do_control
method be called before there is a change in the amount of fuel being delivered to

the engine? Explain your answers.

(d) It is now desired to use the control system in several different types of
car. Unfortunately the hardware in each type of car is different and requires different
interface software. Thus, for example, the Accelerator class designed for one type

of car cannot be used with another type of car.

Using good design principles, show the necessary changes to the software to
allow this, for the case of one additional car type, drawing any modified parts of the
class diagram, and identifying any design patterns used. You do not need to give

any pseudocode in your answer.

(cont.

[15%]

135%)

[25%)

[25%)



ControlSystem

for each ¢ in components {

c->compute () ;
}

for each ¢ in components ({

+add_component (c:Component *)

+remove_component (c:Component*)

+do_control () =<9
c->transfer ();
components }
£3
Component
return stored_outputﬁ -stored_output: double 2
- -output: double <
| S —— +get_output (): double Sl
|======w=w==ed+transfer () >i
+compute ()

stored_output = outputﬁ /\
A

input
. — Integrator
input "
Fuellnjector -integral: double
= =| +compute () tcompute () B .I
L

integral=integral+input->get_output();
Accelerator output=integral;

= = 1+compute ()

- i input

! — Differentiator
, Revs -last_input: double
1

+ t alialal
:' = = ==|+compute () compute () 1
1 1
: N output=input->get_output()-last_input;

These classs are responsible for last_input=input->get_output ();

interfacing with the hardware of

the car. For example, the ) .
compute () method of the || Gain input
Accelerator class will obtain

the position of the acclelerator +K: double

pedal and store it in its output +compute () ==,

member variable and the compute() '
method of the Fuellnjector

class will read its input and output=input->get_output () *k;
cause the car's fuel injector to

be set accordingly.

inputs(]

— Sum

+compute () F======1
1

output=inputs[0]->get_output ()+inputs[l]->get_output( )[ﬁ

Fig. 3
(CONTINUED OVER.



10

int main()
{

ControlSystem cs;

Accelerator a;
cs.add_component (&a) ;

Differentiator d;
d.input = &a;
¢s.add_component (&d) ;

Sum s;
s.inputs[0] = &a;
s.inputs[1] = &d;

cs.add_component (&s) ;

FuelInjector f;
f.input=&s;
cs.add_component (&f) ;

while(true)
{

cs.do_control();

by

Fig. 4

END OF PAPER



	
	
	
	
	
	
	
	
	
	

