<u>3B1 – Radio Frequency Electronics 2006</u>

(some numerical answers etc.)

- 1(b) R1 R2 R3 R4 1M2 150k 3k3 33k stage 1 390k 47k 1k 10k stage 2 100nF coupling caps, 15nF shunt cap.
- 1(c) Use diode demodulator and comparator to monitor signal level and MOSFET analogue switch to mute the signal when at low levels.
- 2(b) With L = 10 nH @ 1 GHz = j63 Ω , so Q factor = 30 gives shunt resistance of ~2 k Ω , hence choose transistor bias to give -R of LESS than this eg. -50 Ω to guarantee oscillation. C = 2.53 pF for LC resonance at 1 GHz.
- 3(a) Choose Chebyshev for sharp frequency cut-off. Low pass up to 7 MHz, high pass from 5 MHz gives cascaded bandpass 5-7 MHz.
 C1 = 38 pF, C2 = 22 pF (low pass stages), (A-1)R = 580 or 1660 Ω
 C3 = 19 pF, C4 = 33 pF (high pass stages), ditto
- 3(b) w = 3.85 mm microstrip, 0.46 mm stripline for 33 Ω .
- 3(c) 37 mm track length difference = 90 degrees. For 66 Ω track, use microstrip 0.92 mm wide; not possible in stripline (-0.26 mm).
- 4(a) $P = 2.5 \text{ mW/m}^2$, $H = 3.6 \times 10^{-3} \text{ A/m}$, E = 1.37 V/m.
- 4(b) P rec. = 33 pW, Vrec. = 58 μV into R = 50 Ω.
- 4(c) Normalise to 1.74 + j1.16. Voltage refl. coeff. = 0.46 Match with C = 2.3 pF and L = 9.4 nH.