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Module 3F1, April 2006 — SIGNALS AND SYSTEMS — Answers

1 (a) Open-loop poles at —1/2 = j/7/2. Unstable.
(b) T(z) = —k/(z2+z+2—k).
©1<k<2
(d) For 1 < k <2, limy 0y = —k/(4—k).
(e) B.

2 (a) () gn=(1,-1,1,-2,1,0,0,...).
(i) Causal and stable.
(iii) Input = u,, — 2u,,_1.
In(x+1 for —-1<x<0
(b) g(x) = e 1)
— In(1-x) for0<x<1

3 () Sx(w) = [2, rxx(T)e 7?%dr

) 0, =2/T.
gl e ) < 1/7,
© |H(w)|=¢ V™70 1=3]0lT ol < 17%
0 if 1/h<|o|<2/T
_ S
W= ()
4  (a)
X1 H T
Xt
H 0.9 0.1
T 0505

Py =5/6 and Pr =1/6.

(b) H(X,11,X;) = 1.2075, H(X, 2, X;) = 1.2837.

(c) C(Code)-0 S(Symbol)-HH, C-10 S-HT, C-110 S-TH, C-111 S-TT.L/2 =
0.7082.

(e) No.
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1 (a) The open-loop system has two poles at —1/2 + j\/7/2. The pole-zero
diagram in Fig. 3 shows all the poles outside the unit disk, and so the system is unstable. [20%]

ah
NP,

Re

Fig. 3

(b) The closed-loop transfer function is given by

_Y(Z)_ kP(Z) . —k
L@ = o) “T+kPG) ~ Z1232-%

[10%]

(c) The closed loop poles are the roots of Z%2 +27z+2— k=0 which are given by
—1++/4k—7
1= —
2
For closed-loop stability we need the poles inside of the unit disk. For 4k —7 < 0O the
poles are complex and therefore we need
1\?  (VaE=T\*
(2) (57 =

2 2

or |[4k—7| < 3. Since 7—4k >0, we get 7—4k < 3,0r 1 <k <7/4. For 4k—7 > O the
poles are real and therefore we need

—~1+v4k—7

or -2 < —1—+/4k—"7 and —1 + +v/4k—7 < 2, which is equivalent to v/4k—7 < 1 and
V4k—1T7 < 3. Since 4k—7 > 0, we get 7/4 < k < 2. Combining both, we get the final
answerof 1 <k < 2. [30%]

(cont.

-1
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(d) Whenk ¢ (1,2) the system is unstable and therefore y, will grow unbounded.
When k € (1,2), the closed—loop system is stable and we use the final value theorem (the
closed—loop transfer function 7'(z) was found in part (b)):

—k z _ —k
2+z+2—kz—1 44—k

n—seo

lim y, = lim(z—1)
z—1

() For k= 1.5, the closed-loop system is stable. Because the open—loop system
has two unstable poles, the Nyquist plot must have two conterclockwise encirclements of
the —1 point. Thus, plot B is the correct one.

Alternatively, the open—loop system is

~3/2

kP(z):z2+z+2

Nyquist plot A shows that for z= 1 or z=—1 kP(z) = —1.5. However, kP(1) = —3/8 and
kP(—1) = —3/4, thus plot A cannot be the one. Nyquist plot C shows that the magnitude
of kP(z) is always approximately less 0.75. However, |kP(e/1-?3)| = 1.6. Also, there
exists only one encirclement and so the system could never be stable. Thus, plot C cannot
be the one. Plot B satisfies all of the above conditions and is the correct one. In addition,
the closed—-loop system is stable as explained above.

(TURN OVER

[20%]

[20%]
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(@ @) Since the pulse is the difference between elements of the step, the
reponse of the pulse is also the difference of the response of the step. Thus,

0 n<-1
1 n=0
-1 n=1
=<1 n=2
-2 n=3
1 n=4
0 n>S5s

Alternatively, we could have found the transfer function first:

Y(2) =142 2273 =G(2) ! —
1—2z"1
Thus,
Gz)=1-z7'4z72-273 4774
The inverse z—-transform gives the above result. [20%]

(ii) The system is causal since :} responds at the same time (and not before)
the input. It is also stable since Y |g| is finite. [10%]
k=0
(ii)) Since we know the response of the system to a step, we can use linearity
and time—invariant properties to find the answer. At time n = 0 we need
xop = 1. That can be obtained with the step u,. To obtain x; = —2, we need
to add to uy, the term —2u,, ;. It turns out that the input u,, — 2u,,__{ results in
the response we are looking for. [20%]

) @ When g(.) is monotonic increasing, the cdf of Y is given by
Fy(y) =Pr{Y <y} =Pr{g(X) < g(x)} =Pr{X <x} = Fx(x)

since ¥ = g(X) and y = g(x), and g(X) < g(x) implies that X < x if g(.) is
monotonic increasing. [10%]

(i) Now fx(x) = % over the range —1 < x < 1, to make the uniform pdf
valid. So the cdf of X will be

" 0 forx< —1
Fx (x) =/ fx(w)du=<¢ (x+1)/2 for —1<x<1
- 1 forx>1

(cont,



The cdf of Y will be

FY(}’)=/_y°°fY(u) du'—‘/y

-0

1
5 exp(=y]) du

To deal with the modulus of y, we consider y < 0 and y > O separately.
Ify<O:

= 1eXP )

y
_ 2

Fy(y) = / yw % exp(y) du = B eXP()’)}

©0

Ify>0:
F = °1 du+ 71 d
v0) = [ geb)dut [ Sexp(-) du
1 1 y 1
= 3+ [Fen] = 1-gen)

Using the result of part (i):

Fy(y) = Fx(x) = )%1
Therefore if y < 0:
’%1 - %exp(y) andso y =In(x+1)
and if y > O:
)%1 —1— %exp(——y) andso y= —In(1—x)

We note that if —eo <y <0Othen —1 <x <0, and if 0 <y < oo then
0<x<1,s0g(.)is given by:

In(x+1) for —1<x<0
y=gx)=
—In(1—x) for0<x<1

and g(.) correctly maps the full range of X to the full range of Y. A check on
the gradient of g reveals that it is indeed strictly monotonically increasing, as
required. [40%]

(TURN OVER



3 (a) The Power Spectral Density (PSD) of a random process X is the Fourier
Transform of its ACF:

Sx () =FT{rxx(7)} = /

{=+]

rxx(T) e 10T 4g

N.B. {X(#)} must be at least Wide Sense Stationary (WSS) for this to be valid. In this
case it is ergodic which implies that it is stationary. [15%]

(b) We need to calculate the Fourier transform of the given sinc?( .) function.

From the E&I data book page 25, a triangular pulse g(¢) of base width 2b and height
A transforms to the function Ab sinc?(wb/2) in the Fourier domain. Hence:

Ab sinc(0b/2) = / Zg(t) exp(— jor) dt

We may interchange ¢ and @ and change ¢ to 7 to get:

o0

Ab sinc?(h/2) = / wg(a)) exp(—jort) dw = ~21; /_0; 2ng(w)exp(jowt) dt

since g is an even function and the LHS is purely real.

Hence 27g(®) is the Fourier transform of Ab sinc?(1h/2), and the given ACF will
transform to a triangular-shaped PSD, whose half-width b and amplitude 27A are given
by:

2 2
b and  2ma=2"E _pr

So, expressing the triangular PSD pulse in full:
nPTy(1-3o|Ty) if |o| <2/
Sx(w) =
0 if |CO| > 2/T0

Hence, o, =2/Tp. [30%]

(c) For alinear system, excited by a signal with PSD Sy and producing an output
signal with PSD Sy, the power gain is |H(®)|%. Hence

Sy (w)
Sx (@)

Hence, as long as |Sx(®)| > 0, we can calculate |[H(w)|. Therefore if || < 2/Ty

Sy(w) = Sx(w) |[H(@)|* andso  |H(w)| =

B_1-loTy .
|H ()| = Sr(@) _ T 1-}o[Ty o lel< /T
Sx (@) 0 if 1/Tp<|o|<2/T

(cont.
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It is not feasible to calculate |H(w)| outside the range |w| < 2/Ty because both the

numerator and denominator in the ratio % will be zero, leading to an indeterminate

answer.

(d) Itisdifficult to calculate A(z), which is the inverse Fourier transform of H(w),
because the above method only gives us |H(®)| and there is no information on the phase
component of H(w). We need both amplitude and phase information about a function in
order to perform an inverse Fourier transform on it.

To overcome this difficulty it is necessary to measure the Cross Spectral Density
Sxy{(®), which is the Fourier transform of the Cross-Correlation Function ryy(7)
between X and Y. We find that

Sxy(®)
Sx ()

Sxy(w) =Sx(w) H(w) andhence H(w)=

which gives both phase and amplitude information about H(®), as required. Hence

h(t) = FT-! (SXY(CO))

Sx ()

(TURN OVER

[30%]

[25%]



4 (a) The table of conditional probabilities of X; 1 given X; is

X
X;
H 0.9 0.1
T 05105

Let Py = Prob{X; = H} and Py = Prob{X; = T} then the equilibrium condition is

Py =0.9Py 4-0.5Pr
Pp=1-Pr.

Hence, the equilibrium distribution of X; is Py =5/6 and Pr = 1/6. [20%]

(b) Wehave H(X;) = —(5/6)logy(5/6) — (1/6)logy(1/6) = 0.65 and

H(X,11|X =H) = —0.910g,(0.9) — 0.110g,(0.1) = 0.4690
H(X,11]X; = T) = —0.510g,(0.5) — 0.510g,(0.5) = 1
H(X,,11X) = (5/6)-0.469+ (1/6)-1=0.5575.

Hence, H(X;11,X:) = H(X;) + H(X;1+1|X;) = 1.2075.
The table of conditional probabilities of X, given X; is:

X,
Xz
H 0.86 | 0.14
T 07 |03

Therefore we obtain

H (X, 2|X; = H) = —0.8610g,(0.86) — 0.1410g, (0.14) = 0.5842
H(Xt+2|Xt = T) = —0710g2(07) —-0.3 10g2(03) =0.8813
H(X;12|X,) = (5/6) -0.58424 + (1/6) - 0.8813 = 0.6337.

Hence, H(X; 42, %:) = H(X;) + H(X,12|X;) = 1.2837.
The fact that H (X2, X;) > H(X,1,X;) means that the mutual information between
X; 19 and X; is less than the mutual information between X; 1 and X;. [25%]

(cont.



(¢) A Huffman code is:

Code Symbol Probability

0
0 HE 0.75------om e e e \
0 \
10 HT 0.0833---------ocemmme \ 1 --1
0 -~0.25---—-- /
110 TH 0.0833--\ 1/
1 ---0.1666--/

111 TT 0.0833--/

The average codeword length is L = 1.4164. Hence the average number of bits per
symbol is L/2 = 0.7082. [25%]

(d) The joint entropy of N symbols is
HX N1 X411, %) =H(X:) + (N—-1)H(X;,1]X;) = 0.65 + (N —1)0.5575.

Therefore the theoretical lower bound on the average number of bits per symbol is

1 1
NH(XI'FN—D oo 7Xt-|-17Xt) = 05575+ NOOQZS

For N > 50 we have 717H(X,+N_1, oo, X311,Xr) <0.56. Hence an average of 0.6 bits per
original symbol does not violate the entropy bound. [15%]

(e) It is always possible to construct a code with an average number of bits per

symbols less than

1 1

—H(Xi i N=1, s X101, %) +—.

N (Xe+N—-1 t+1 t)+N
For N > 50 we have 7%7H(Xt+N—1> e Xp 1, X)) + 7%7 < 0.58. Therefore, a code which
encodes more than 50 symbols at a time with 0.6 bits per symbol in average is not optimal.

Hence, the claim cannot be correct. [15%]

END OF PAPER



