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(a) Taking Laplace transforms:
sZ(s) — z(0) = AZ(s) + Bu(s)

Assume that z(0) = 0. Then
z(s) = (s — A)"'Ba(s)

But g(s) = CZ(s) + Di(s), so
g(s) = C(sI — A)"'Ba(s) + Di(s)
so the transfer function matrix is
G(s)=C(sI— A 'B+D
(b) At steady-state we have H = 0. Hence M* = m But /P* + 1 = M, = 1 at steady-state.
So M* =1 and P* = }

(c) Take a Taylor series expansion up to first-order terms:

H=% = (M +u)- \/(P* +U2)+1(1+$) = f(w,u1, u2)
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where the partial derivatives are evaluated at the operating point, namely at (z,u;,us) = (0,0,0).
We have f(0,0,0) =0 and:
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Hence the linearised state equation is:



which is in the standard form with

1 1
A——E and B= [1, —5]

We have M, =1+ 1y = \/(% +ug) + (1 +z) £ g(z, us) so the output equation is
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and hence the linearised output equation is
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which is in the standard form with
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(d) From part la we have
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2. (a) Let ko be the gain required to put two closed-loop poles at —4. Then
1+ koG(—4) =0

hence

1 =442 x [(—4)2 4 12(—4) + 40]
REEO 1

(or, using the geometry shown in Fig.2: ko = 2 x 2v/2 x 2¢/2 = 16.)
With this value of gain the closed-loop characteristic equation is

ko =2x8=16

1+kG(s) = 0

1
1 =
R Ty + 125 + 10)

which has the same roots as

(s +2)(s®+125+40) +ky =

S 41452 +64s+80+ky =

3+ 145 + 645 +80+16 =
s34+ 14s% + 645 + 96

o O o O

But we know that this has 2 roots at —4, so letting the third root be p we have
8% 41452 + 645 + 96 = (s + 4)%(s — p)

Hence (comparing the constant terms) 96 = 42 x (—p) so .

(b) Let k1 be the proportional gain at which the system just loses stability. Then the gain margin is
k1/ko. To find k1, note from Fig.2 that the root loci cross the imaginary axis at £87. So we find the
gain k; as before:

1 |85 42] x|(85) + 12(84) + 40|
e 1
= 85 +2| x [8F — (=6 +25)| x 8] — (—6 — 2j)|
= V6444 x /36436 x v/36 + 100
= 2V17 x 6v2 x 2v/2V17
816

k=

Hence the gain margin is 816/16 =

(¢} Note that
14 3 _ s+3
s s

so we need the root-locus diagram of

s+3
s(s + 2)(s? + 125 + 40)

There is one zero at —3, and four poles at 0, —2 and —6 + 2j.

Hence there are 4 — 1 = 3 asymptotes, which will make angles /3, © and 57 /3 with the positive real
axis.

These asymptotes intersect at the ‘centre of gravity’ of the poles and zeros:
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So the pole-zero plot, with asymptotes, looks like Figure 1.

Now adding the portions of the real axis which are to the left of an odd number of poles and zeros
gives the partial root-locus diagram shown in Figure 2.

There must be breakaway points between 0 and —2, and to the left of —3. Since only a ‘sketch’ is
asked for, a guess can be made at the locations of these, and at the shape of the remaining loci,
giving Figure 3. Note: This is not the only possible form. Credit will be given for other plausible
forms — there is only one.

The benefit of using a PI controller would be that integral action would allow a demanded speed to
be followed without error (in the steady-state) despite variations in the material being machined (eg
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variations of hardness, imperfections, etc).




3.

{a) Standard test for controllability: if n is the dimension of the state vector, then the system & = Az+Bu

is controllable if and only if
rank[B, AB, A’B,..., A" 'B] =n (1)

(b) The effect of an input trajectory u(t), 0 < ¢ < t1, on the state is given by

131
z(t1) = / e By(r)dr
0
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[B+AB(t, — 1)+ A’B
0

If the rank test in part 3a is not satisfied, so the rank is smaller than n, then the columns of
[B,AB, A%B,..., A" !B] do not span the whole state space. But, as a consequence of the Cayley-
Hamilton theorem, the columns of A* B, where k > n, are in the span of the columns of (B,AB,A%B,... A"
Hence x(t;) is confined to lie in the column span of this matrix, and hence cannot be driven in other
directions in the state space, no matter what input trajectory is chosen.

(¢) Let the state vector be z = [0, 6, z, 2]T. Then

4 01007[¥ 0
. ld] |oooof]é a
=131 looo1||z|T]|o]|" @
z v 0 0 0 z 0
(d) Applying the test (1) to equation (2) with n = 4:
0 « 0 O
. 2 3 . a 0 0 0 _
rank[B, AB, A*B, A°B| = rank 00 0 ay|= 4
0 0 ay O

since o > 0 and v > 0.Hence the ball and beam apparatus is controllable.
(Note: Evaluate A%2B as A(AB) etc to minimise amount of computation required.)

(e) The torque is given by u = —k”'z, where k = [0, k1, k3, ko]”. Hence
&= Az + B(—kTz) = (A - BkT )z

so closed-loop stability is determined by the eigenvalues of (A — BkT). Now

0 1 00O 0 0 0 0
_ T 0 0 0 0 . 0 ak1 Olk3 Oékg
A - Bk - 0 0 0 1 0 0 0 0
Ly 0 0O 0 0 0 0
[0 1 0 0
= 0 —ak1 -—-Oékg '—Oékg
- 0 0 0 1
| Y 0 0 0
Hence
A -1 0 0
_ Ty _ 0 X+aki aks ako
M—-(A—Bk") = 0 0 \ _1
—y 0 0 A



so that (expanding the determinant by the first row):

0 wks akg
det\ ] — (A— BET)] = AN\ +aky)]+det| 0 X -1
—y 0 A

= X\ +ak) —y(—aks — \ky)
M aki X3 + ayko) + avks

In this polynomial the coefficient of A2 is zero. Hence by the Routh-Hurwitz criterion, the roots
cannot all have negative real parts, so it is impossible to achieve asymptotic stability.

Alternative without using state-space method: Using transfer functions, we have
6

@ z
s’ 0
Hence with the proposed feedback we have
U = [—klg et k201_;)’ — k30£_4’7:| U
s s s
which gives (multiplying through by s*) the closed-loop characteristic equation
st 4 kias® + kgays + ksay =0

and now the same argument applies as above.



4.

(a)

The observer block diagram is standard.

The purpose of a state observer is to form estimates of all the state variables from measurements of
inputs and outputs of a dynamic system.

The operation of a state observer is best described by reference to a standard block-diagram. The
observer (with state 4) is a copy of the plant (with state z). The equations of the combined system
are given by

£ = Az+ Bu
& = Af+Bu+ Ly —19)
where y = Cz and § = C% (assuming D = 0 for simplicity). Defining the state estimation error
e=1x— I gives
¢ = -3
(A—LC)e
so the error decays to zero at a rate dependent on the eigenvalues of A — LC (also known as the

‘observer poles’), if these all have negative real parts.

The first equation is second-order, and the second one is first-order, so we expect to need 3 state
variables. Let the state vector be z = [, 6, 'U]T. Then the given equations can be written as

g 01 1 6 1
g=|6|=[10 0 0 |+| 0 |f=Az+Bf (3)
k) 0 1 -1 v -1

which is in the standard state-space form.

Suppose that only 6 is measured. Then 8 = Cix requires
Ci=[0 1 0] (4)

Since the state dimension is n = 3, the system is observable if

Ch
rank | C1A | =3 (5)
C A?
We have
Cy 0 1 0
Cid |=(100 (6)
C1A? 01 1

which clearly has rank = 3 by inspection. (3 linearly independent rows or columns. Or compute
determinant and see that it is not 0.) So the system is observable.

Now suppose that only v is measured. Then v = Cs2x requires

Co=[0 0 1] (7)
We have
Cy 0 O 1
CoA |=]0 1 -1 (8)
CyA2 1 -1 1

which again has rank = 3 by inspection. So again the system is observable.



(d) If 6 is measured but v is not, then we have C; as the output matrix. The entries of the observer gain
matrix L need to be designed. Since there is one measured output and 3 states, the dimensions of L
are 3 x 1. The observer poles are the eigenvalues of the matrix A — LC (see above). We have

[0 1 1 A
A-LC = |10 0 [—|£|[0 1 0]
[ 001 -1 2
[0 1—-¢4 1
= |1 —4 0
[0 1-43 —1

Now
A -1 -1
det\] —(A—LC)] = det| —1 A4+4, 0
0 43—1 X+1
A+ L)(A+1) — 0]+ [(6 — 1)(A+1) + (83 — 1)]
= N4 (L +)A+ (fo+ L — DX+ (£ + 45 —2)

But we want this to be the same as
A+12=X3+322+32+1
so we must have

1446,=3 = (=2
bo+l;—1=3 = £ =2
b14+43—-2=1 = f3=1

(e) Possible reasons for using both # and v measurements for estimating x:

e The model is always approximate, so the state estimation results are always approximate in
practice. Therefore having a direct measurement of another state variable will improve the
quality of estimation of that variable, as well as that of other states.

¢ Measurements are often noisy. Having more measurements gives the potential for improving the
signal-to-noise ratio. In particular, if noise statistics are known, the observer can be designed
so as to optimally combine the measurements to get the best quality state estimates (Kalman
filter).

o Estimation of sensor bias may be possible if more than one sensor is used.

¢ Measurements may be distorted by sensor characteristics. In particular, angle and velocity
sensors may have different performance in different frequency ranges. Using both measurements
may allow accurate coverage of a wider frequency range.

e Even though the system may be observable using only one measurement, it may be very weakly
observable (observability matrix ¢ nearly singular). In this case a second measurement may
improve the quality of the state estimate.

e A sensor may fail. Having two different ones available may allow the system to continue working
after one fails.
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. (a) Gain: 16. Third pole: —6.
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