PART IIA 2006
3F6: Software engineering and design
Principal Assessor: Dr T W Drummond

ENGINEERING TRIPOS PARTIIA Datasheet: None

Module 3F6

SOFTWARE ENGINEERING AND DESIGN CRIB

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

Version; 1

1 Concurrency and mutexes

(@ A multi-threaded program has two or more separate threads of execution.
However, unlike a multi-process system, all threads of execution share a single common
memory space. Multi-threading provides a natural framework for event-driven, real-time
systems. The two principle hazards are:

1) contention in access to shared resources, especially memory.

2) deadlock caused by all threads blocked waiting for each other to release a lock
or send a signal.

These are both failure modes. A third less catastrophic hazard is failing to meet real
time responses due incorrect or inappropriate scheduling.

(b) A critical section is a block of code where it must be guaranteed that at
most one thread is executing it at any one time. Usually the code in a critical section
is dependent on accessing shared resources such as a shared global variable. The obvious
approach to providing safe access is to maintain a variable which is set on entry to the
section and cleared on exit. Eg

bool mutex;

vhile (mutex); mutex=true;
// critical section
mutex=false;

However, there are two problems with this. Firstly, it has to be assumed that the
operations of reading and setting the mutex are indivisible. Secondly, the busy wait on
the spin-lock "while(mutex)" is grossly inefficient. These problems are solved by making
the locking and unlocking of mutex an operating system call. The OS can then ensure
indivisibility of the critical operations and it can interact with the scheduler to ensure that
blocked threads are simply put to sleep until the shared resource is made available.

Version: 1 (cont.

3

(¢) Implementations for the Put and Get operations are as follows:

// class data ~ std circular buffer

Message buf[N];

int inx,outx,used; // all init to zero
pthread_mutex_t lock; // mutex lock
pthread_cond_t notFull, notEmpty // signals

void Buffer: :Put(Message m)

{

pthread_mutex_lock(&lock);
while (used == N) {

pthread_cond_wait (¬Full, &lock);
}
buf[inx] = m; ++used;
inx = (inx + 1) % N;
pthread_cond_signal (¬Empty) ;
pthread_mutex_unlock(&lock);

Message Buffer::Get()

{

Version: 1

Message m;
pthread_mutex_lock(&lock) ;
while (used == 0) {

pthread_cond_wait (¬Empty, &lock);
}
m = buf[outx]; --used;
outx = (outx + 1) % N;
pthread_cond_signal (¢énotFull);
pthread_mutex_unlock(&lock);
return m;

(TURN OVER for continuation of Question 1

2 Specifications and class diagrams.

(a) Bookwork: A virtual function is one that is dynamically determined by class
of an object. It is specified in a base class from which each derived class may specify
its own implementation. A common example would the method for drawing objects of

different types in a Drawing program.

(b)
AmbulanceSystem
- ‘FJ I_\V v
AmbulanceDisplay | | MapDisplay Ambulancelist Emergencylist
: 5/] [_>
Staff
0.. * *
5 Ambulance < Skills
location: Location
select ()
1 place_call() Equipment
Assign{e:Emergency)
Status update_locatiﬂoz.: (1l:Location)}
colour ()
*
Avallable Responding 15 Emergency
location: Location
colour (} golour() nature: string
0.1
1
GPS é— OnBoardSystem
set._deatination(l:Location) set_asaignment {e:Emergency)
get_location(): Location

Version: 1 (TURN OVER for continuation of Question 2

4

Note that the buffer full and empty conditions should be tested by while loops
because there is no guarantee that the buffer state will not change between the time that
the thread is reawoken and reaquiring the mutex lock.

(d) The difficulty with the above scheme is that a consumer thread must commit
to getting a message from a buffer, and will block until one arrives. If the consumer is
servicing multiple buffers this is unacceptable.

The simplest non-polling solution is to add an extra buffer control, whose messages
are the buffer index. The i’th producer would then send a message m to the consumer by

control->Put (Message(i));
in[i]->Put(m) ;

the consumer would read incoming messages in two stages, first it would get the
producer index from the control buffer, then it would read the message, i.c.

do {
i = control->Get();
m = in[i]->CGet();

}

Version: 1

(©)

Version: 1

Task

location: Location
+nature: string

L

Emergency

Priority

|

Schedule

ScheduledTask

time: Time

7

3 Design patterns and sequence diagram

(a) There are seven classes present. Display, DisplayMode, TrackBrowser,
CurrentlyPlaying, Library, Queue and Track. Each Display has a DisplayMode and each
DisplayMode knows which display it belongs to. TrackBrowser and CurrentlyPlaying are
derived from DisplayMode. A TrackBrowser has a (or can navigate to) a Library. Library
has a (can navigate to the) Queue and both have many Tracks. Currently Playing has
a Queue. Display, DisplayMode, CurrentlyPlaying and TrackBrowser constitute a State
Pattern.

(b)

c:CurrentlyPlaying q:Queue t1:Track t2:Track d:Display

] 1 T]
update 1

I
now_ playing I l
|
time _remaining !
| gn

now_playing 1

remove

num_tracks i

Hi

now_playing

now playing _ |

)

now_playing

)

o
-] e R m e m o e - —

now_playing _ |

i e_remainina |

! show
1
|
i
t

A

Version: 1 (TURN OVER for continuation of Question 3

(¢) The main requirement is to turn Track into a class hierarchy. The Playlist
class is most easily represented with a Composite Pattern.

*,
Playable
display string(}: strin
play()
Playlist
name: string
current: Playable Track RadioStation
display_string(): strin name: string
play() artist: string display_stringfj: ’tn"gl
play()
display_string(}: string]
. play()
display_string() { time_remaining() ()

string s=name;
s = s+current->display_string();

return s8;
) display_string()} {

string 8 = irs _var—>name();
8 = s+irs_var->current_track{();
return s;

}

Y
internetRadioStation

stream_audio{)
name(): string
current_track(): string

Version: 1

4 bbb

END OF PAPER

Version: 1

-

(a) Formal methods permit the exact expression of the system
specification in a mathematical or defined notation, so that
automatic and verified tools can be used to transform the
specification into error-free software components. This approach
would be highly suited to the development of the core of the command
and control system, which must be correct and bug-free.

Prototyping, whereby a cheap throw—-away version of the system is
built and then used to refine the specification in conjunction with
the users and the customer, would be suitable for designing the
maintenance system, which is not safety-critical in 'real time' but
which must present data in a usable and unambiguous way.

(by (i) Any three from: [book—-work]
* a culture of quality
information hiding and encapsulation
use of strongly-typed languages
design & program for readability and understandability
avoid dangerous programming constructs
use defined and documented development processes
hold open code reviews and software inspections

* ok ok ok ok

(ii) In N-version programming, at least three versions of the
system are designed, implemented and tested separately. These
versions then execute in parallel and the ocutputs are compared
in a voting system. Hopefully all will agree, but if not the
error is recorded and the majority view is used.

(iii) [beyond book-work] Ideally, each version would be designed,
implemented and tested by completely separate teams, sharing
only the specification of the component. Within each team,
the design and implementation of tests should not be carried out
by the same people who design and implement the software.

Fach team should use a different programming language, and
each version should ideally run on a different operating
system and hardware platform. In this way, the chances of
more than one version encountering the same bug are minimised.

(c) User interaction permits the technicians to interrogate and update
the monitoring system. The interface should aim to be familiar,
consistent and straightforward. Since it will run on a laptop, it
can make use of standard menu selection, forms and dialog

components.

Information presentation will probably consist of graphs, dials and
event lists. Judicious use of colour would assist in identifying
warning and error conditions. The interface should be easy to

learn, robust and quick to use.

If prototypes are constructed, the team can observe the technicians
as they try out the prototype, and can adapt and refine the design
of the user interface in collaboration with them.

'§€£> 4%@»¢f j)k%{ﬁ—
Mo Gary 18 Sovieny 2006

