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1 A symmetrical spinning top of mass m has principal moments of intertia A4C
about axes passing through the fixed point O in contact with a horizontal table as
shown in Fig. 1. The distance from O to the centre of mass of the top is a . The top is
spinning at steady rate @ about its axis of symmetry.

(a) By using the Gyroscope Equations or otherwise find a general expression for

the rate of steady precession when the axis is inclined at an angle & to the vertical. [40%]
. . mga .
(b) Show that the precession rate approximates to T for fast spin. [10%]
@

(c) A top will not stand up unless it is spinning fast enough. Use your answer
from (a) to determine the rate of spin below which the top will not stand up. [40%]

(d) Discuss briefly whether your answer is truly valid for 8 =0 . [10%]
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2 An assembly comprises a thin uniform square plate OABC of mass 6m and side
2a and a thin uniform rod OD of mass 6m and length 2a . The rod is attached to the
plate at O with OD perpendicular to the plane of the plate as shown in Fig. 2. The
centre of the plate is at E and the centre of the rod is at F. A Cartesian reference frame
(x, ¥, z) has its origin at O as shown.

(a) Locatethe (x, y, z) coordinates of G, the centre of mass of the assembly. [10%]
(b) Find the inertia matrix in the (x, y, z) frame at O and verify that the
moments of inertia are each equal to 16ma* and that the only non-zero products of

inertia are each equal to  6ma’ . [30%]

(¢) Find the inertia matrix at G in a frame (x’, y, z’) parallel to (x, y, z) and
verify that the products of inertia are each equal to +3ma’ . [40%]

(d) Show that EF is a principal axis and find the principal moment of inertia
along EF. [20%]

2\ |F /<2a\;
4

Fig. 2
(TURN OVER
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3 A flat circular table whose centre is at O 1is inclined at a small angle « to the
horizontal as shown in Fig. 3. It is rotating about its axis of symmetry at steady rate
Qk where i, j, k is a space-fixed reference frame with j aligned with the horizontal.
A solid sphere S of mass m and radius a is observed to be rolling without slip on the
surface of the table. The sphere 1s moving steadily with constant velocity vj along the
horizontal line AOB (which is fixed in space) as shown in the figure.

(a) Draw a free-body diagram of the ball and hence show that:
(i) the table exerts a constant force on the ball vertically upwards; [10%]

(i1) the couples Oy and Q; (as defined for use with Euler’s equations in the
Datasheet) are zero; [10%)]

(iii) the magnitude of the angular acccleration of the ball is >2 ;m i [20%]
a

(b) Is the motion of the ball governed by gyroscopic effects? Give reasons for
your answer. [10%]

(¢) Use ano-slip condition to find an expression for the velocity v of the ball.  [50%)]

(cont.
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4 Figure 4 shows two objects each of mass m that move in free space under the
action of their mutual gravitational attraction. For planar motion there are four degrees
of freedom which are taken to be the displacements x and y of the centre of mass C,

the distance » between each mass and the centre of mass and the angle & shown in the
2

where (G 1s the universal

figure. The gravitational potential energy is V =- 5
P

gravitational constant.

(a) By using Lagrange’s equations derive the equations of planar motion using
the four generalized coordinates x, y, rand 4.

(b) Show that x, y and #*0 are all constant during the motion, and explain

these results in physical terms.

(¢) One possible solution to the equations of motion is steady circular motion of
each mass around the centre of gravity. Find in terms of &, m and r an expression
for the period of this motion.

[50%]
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5 A schematic of a pulley system is shown in Fig. 5. An elastic belt connects two
pulleys A and B each of mass m and radius r . The centre of pulley A is fixed in
space while the centre of pulley B is constrained to move vertically. The rotation of
pulleys A and B are described by angles 6, and 6, respectively and the displacement
of pulley Bis x. Each pulley may be taken to have a polar moment of inertia mr”. For
small oscillations of the system each side of the belt can be represented as a spring of
stiffness k as shown.

(a) Neglecting any gravitational forces, use Lagrange’s equations to derive the
mass and stiffness matrices of the system.

(b) It is evident that the system has a vibration mode with a natural frequency of
zero, which involves only rotation of the pulleys. Write down the eigenvector for this
mode and demonstrate that it satisfies the matrix equations of motion.

(¢) Pulley A is now constrained completely so that & = 0. Write down the
matrix equations of motion that govern the two remaining degrees of freedom and
determine the natural frequencies and mode shapes.

W
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END OF PAPER

[50%]

[20%]

[30%]
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Dynamics in three dimensions
Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

dp _
dat Fe©

where p = M vg, M is the total mass, vg is the velocity of the centre of mass and F(©) the
total external force applied to the system.

(b) Moment of momentum about a general point P
Q@© =(rg—rp) Xp + hg
= ilp + i‘p Xp
where Q(©) is the total moment of external forces about P. Here, kp and kg are the
moments of momentum about P and G respectively, so that for example

hp = Z(ri — rp) X mr;
;

=hg + (rg—rp) Xp
where the summation is over all the mass particles making up the system.

(¢) For arigid body rotating with angular velocity @ about a fixed point P at the origin of
coordinates

hp = er(a)xr)dm =I1Iw

where the integral is taken over the volume of the body, and where

A -F -E Wx x
I:|:-FB —Djl, = a))’ s I':|:yi|,
-E -D C Z
W,
and A= _[(y2 +z2)dm B= _[(z2 + x2)dm C= _[(x2 + y2)dm
D= _[yz dm E :_[zx dm F=|xydm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity (2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p+Qxp=F©
where the time derivative is evaluated in the moving reference frame.
When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.

Application of the general formula needs an extra term unless the origin of the frame is
fixed.
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Ao -B-Camaw = Q)
Bap—~(C-A) w3 = O
Cas—(A-B) w1 0 = 03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is w= [®;, @y, @3] and

the moment about P of external forces is Q = [Q1, Q2, O3] using axes aligned with the
principal axes of inertia of the body at P.

(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
A -ADB-Can) 2 = O
AD+AQB-Cas) 2 = O
Cas = Q3
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w;, @y, an] and
the moment about P of external forces is Q = [Q1, 02, O3] using axes such that @z and
Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed in the
body) rotates with angular velocity 2= [£2, £, (3] with 1=w and =w».

Lagrange’s equations

For a holonomic system with generalised coordinates g;

d { QT} ar v
Jgi

dt dgi g <

where T is the total kinetic energy, V' is the total potential energy, and Qj are the non-
conservative generalised forces.

Rayleigh’s principle for small vibrations

t

: : . .V ,
The “Rayleigh quotient” for a discrete system is = = Qt = where ¢ 1is the vector of

g Mq
generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on pS.

If this quantity is evaluated with any vector g, the result will be

(1) = the smallest squared frequency;

(2) <the largest squared frequency;

(3) a good approximation to a)kz if gis an approximation to g(/").

(Formally, %is stationary near each mode.)

3C5/3C6 data sheet 2 HEMH/RSL/DC/IW 2003



VIBRATION MODES AND RESPONSE

Discrete systems
1. The natural frequencies @,, and
corresponding mode shape vectors g(”)
satisfy
K" = o, Mu™

where the M (mass matrix) and K (stiffness
matrix) are both symmetric and positive
definite.

2. Kinetic energy

=Lt
2

3. Orthogonality and normalisation

S a2 [0 TEE

- - I, j=k

%(J)TKZ(/c) —{ Oé / .ik
w,, Jj=k

4. General response

The general response of the system can be
written as a sum of modal responses

q(1) =, ay (1) ul™
n
where ¢ is the vector of generalised
coordinates and a,, gives the “amount” of the
nth mode.

5. Transfer function

For (generalised) force F' at frequency ®,
applied at point (or generalised coordinate) j,
and response ¢ measured at point (or
generalised coordinate) k the transfer
function is

(n)y, ()
) q U g
H(/,k,a)):—zz—]——————
F n a)” -
(with no damping), or
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Continuous systems

The natural frequencies ®,, and mode shapes
u, (x) are found by solving the appropriate

differential equation (see p5) and boundary
conditions, assuming harmonic time
dependence.

T = %J.uzdm

where the integral is with respect to mass
(similar to moments and products of inertia).

0, j#k

Iuj(x) up (x) dm :{1, ik

The general response of the system can be
written as a sum of modal responses

w(x,1) =Y a, (1) 1, (x)

where w(x,t) is the displacement and a,,
gives the “amount” of the nth mode.

For force I at frequency w applied at point

x, and response w measured at point y, the
transfer function is

2

W Uy (X) 4y ()
H(x,y,a))z—:E n i}
Fo 0, ~

(with no damping), or
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Governing equations for continuous systems

Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,), applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
Pw o PPw | [w]z | [&WT
m —P—== f(x,t V=—P|| — | dx T=—m|| — | dx
a7 e I ;) Jx | o

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius a, internal radius & if shaft is hollow, angular
displacement 8(x,f), applied torque f(x,f) per unit length.

Polar moment of area is J = (7 / 2)(614 - b4).

Equation of motion Potential energy Kinetic energy
9*0 . 3%0 | I (&QJZ 1 [aejz
J——GJ—= = f(x,t V==GJ|| —| d T=—=pJ||—| d
Plor ~ Wz =l NG5 ) & P\ )

Axial vibration of a rod or column

Young’s modulus £, density p, cross-sectional area A, axial displacement w(x,¢), applied
axial force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
9w 9w 1 [&sz 1 (&wjz
A —EA = f(x,¢ V=—FA||l — | d T'=—pAl| — | d
P or? ox? i 2 j ox) 2 P -[ o) &

Bending vibration of an Euler beam

Young’s modulus E, density p, cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,?), applied transverse force f(x,f) per unit length.

Equation of motion Potential energy Kinetic energy
2
9w 9w I 9%w 1 [ (9w}2
A + El = f(x,1) V==FEI||l—5 | dx T=—pA|l — | dx
AR T 2 J[&# LAl

Note that values of I can be found in the Mechanics Data Book.
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