ENGINEERING TRIPOS PART IIA

Friday 12 May 9.00 to 10.30

Module 3C6

VIBRATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment:
Datasheet $32: 3C5 Dynamics and 3C6 Vibration (5 pages)
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Single-sided paper Engineering Data Book
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1 A uniform solid circular shaft of radius @  undergoes free torsional
vibration. The material of the shaft has shear modulus G and density p.

(a) By considering a small element of the shaft, derive the differential equation
that governs the vibration, in the form given in the Data Sheet.

(b) Such a shaft, of length L, is built-in to a rigid wall at one end, and is free at
the other end. Write down boundary conditions for each end of the shaft and hence find
the natural frequencies and mode shapes of the shaft.

(¢) Arigid rotor with polar moment of inertia K is now attached to the free end
of the shaft. Write down the boundary condition which now applies at this end of the
shaft, and hence obtain an equation satisfied by the natural frequencies of the shaft/rotor
system.

(d) Sketch a graphical solution of the equation in part (¢). Comment on the
physical interpretation of the pattern of natural frequencies revealed.

[25%]
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2 A beam of length L, mass per unit length m and bending rigidity EI is clamped at
both ends, which lie at x =0 and x = L. The beam undergoes small transverse vibration
with displacement w(x,?).

(a) Starting from the differential equation given in the Data Sheet, outline
without detailed calculation, the sequence of steps involved in calculating the natural
frequencies and mode shapes. Sketch the first three mode shapes. [30%]

(b) You may assume that the natural frequencies w,, are the solutions for @ of

the equation

cosalcoshol =1

where

Sketch a graphical solution to this equation, and deduce an approximate formula for ,,.
[20%)]

(¢) Consider the pattern of transverse displacement
w=x> (x- L)Z.

Sketch this function and comment on its suitability for an assumed mode shape. Use
this assumed displacement in Rayleigh’s principle to estimate the lowest natural
frequency.

L 9
L. . :
You may assume that I w2dx = 0 with the given function w.
0

Is the estimate consistent with your answer from (b)? [50%]
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3 Two uniform disks ‘1’ and ‘2°, of radius R and mass m roll without slip on

a horizontal table as shown in Fig. 1. They are connected together and to a rigid wall by
two springs of stiffness % through frictionless bearings at the centre of each disk. The
displacements of the two disks from equilibrium are y; and y».

(a) Write expressions for the kinetic and potential energies of the system.
Hence derive the mass and stiffness matrices.

(b) Calculate the natural frequencies and natural mode shapes of the system.

(¢) Disk 1 is rolled (without slip) clockwise through 45° from its equilibrium
position while disk 2 is held in its equilibrium position. The two disks are then released
simultaneously from rest. Calculate the angle of rotation from its equilibrium position
of disk 1 at time +/m/k after the release.

(d) The stiffness of the spring connecting the two disks is increased by 20%.
Use Rayleigh’s principle to revise your answer to part (c) for the new system.
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4  Torsional vibration of the crankshaft of an engine is represented by the model
shown in Fig. 2. Five disks, each with polar moment of inertia J are connected by four
massless shaft sections, each with torsional stiffness k. The assembly is supported by
frictionless bearings. The angular positions of the disks are defined by the coordinate
vector [6,,6,,6,,6,,6,] .

(a) Write down expressions for the kinetic and potential energies of the system.

(b) Without detailed calculation, sketch the mode shapes. Explain salient
features.

(¢) Estimate the lowest non-zero natural frequency using Rayleigh’s principle.

(d) A sinusoidal torque is applied to disk 1. Sketch the magnitude of the
response of disk 3 as a function of the frequency of input. Use a dB scale.

() As a model of a component of a real engine, discuss the features that are

missing and their likely effects on the response of the system.
6 & 2 2 Os
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Fig. 2

END OF PAPER
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Part IIA Data sheet S32
Module 3CS5 Dynamics
Module 3C6 Vibration

Dynamics in three dimensions
Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

ap _
dt"F@

where p = M vg, M is the total mass, v is the velocity of the centre of mass and F(®) the
total external force applied to the system.

(b) Moment of momentum about a general point P
Q(e) =({rg-rp) ><i) + ilG
= hp + i‘p Xp
where Q(©) is the total moment of external forces about P. Here, hp and hg are the
moments of momentum about P and G respectively, so that for example

hp= D (ri— rp) X mr;

4

::hG +(rg—rp)><p
where the summation is over all the mass particles making up the system.

(¢) For arigid body rotating with angular velocity @ about a fixed point P at the origin of
coordinates

hp = _[rx(coxr)dm =1 w

where the integral is taken over the volume of the body, and where

A -F -E Wx X
1:[-FB -D}, 0= wy | r={y},
-E-D C ’ Z
@,
and A= _[(y2 + z22)dm B= _[(z2 + x2)dm C= _[(x2 +y2)dm
D= Jyz dm E :J.zx dm F=|xydm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity Q2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p+Qxp=F@©
where the time derivative is evaluated in the moving reference frame.

When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.
Application of the general formula needs an extra term unless the origin of the frame is
fixed.
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Aw-B-C) wmmws = 01
Bwp—-(C-A) w30 = O
Co3—(A-B)wy ;= 03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w;, ap, w3] and
the moment about P of external forces is Q = [Q1, O, 3] using axes aligned with the
principal axes of inertia of the body at P.
(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
A -(AB-Ca) € = O
A +AB-Cao3) 2 = O
Cwy = Q3
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is w = [w/, Wy, @3] and
the moment about P of external forces is Q = [Q1, 02, O3] using axes such that @3 and
Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed in the
body) rotates with angular velocity 2= [€21, {X, (3] with Qi=w; and {Hr=w,.

Lagrange’s equations

For a holonomic system with generalised coordinates ¢;

CZ{HT} Jar Jv _

e e =
W i) dqi dgi

where 7' is the total kinetic energy, V is the total potential energy, and Q; are the non-
conservative generalised forces.

Rayleigh’s principle for small vibrations
t
K

. . : .V ,
The “Rayleigh quotient” for a discrete system 1s — = Ql 4 where ¢ 1is the vector of

Mg
generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p5.

If this quantity is evaluated with any vector ¢, the result will be

(1) = the smallest squared frequencys;

(2) <the largest squared frequency;

(3) a good approximation to cok2 if gis an approximation to g(k).

(Formally, %is stationary near each mode.)
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VIBRATION MODES AND RESPONSE

Discrete systems
1. The natural frequencies w,, and
corresponding mode shape vectors ul™
satisfy
Ku' = CO”ZMM(”)

where the M (mass matrix) and K (stiffness
matrix) are both symmetric and positive
definite.

2. Kinetic energy

=Lt
2

3. Orthogonality and normalisation

M(j)ZMM(k) = 0, / #k

- - I, j=k
0 .

z(])t[{%(k):{ 2’ ]ik
w,, Jj=k

4. General response

The general response of the system can be
written as a sum of modal responses

g(ny=Y a,®)u™
n
where g is the vector of generalised

coordinates and a,, gives the “amount” of the
nth mode.

5. Transfer function

For (generalised) force F at frequency o,
applied at point (or generalised coordinate) j,
and response ¢ measured at point (or
generalised coordinate) k the transfer
function is
(), (n)

. . q _ L‘] Uy

H(.],k,a)) r %mn2*m2

(with no damping), or
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Continuous systems

The natural frequencies ®,, and mode shapes
u, (x) are found by solving the appropriate

differential equation (see p5) and boundary
conditions, assuming harmonic time
dependence.

T= %Juzdm

where the integral is with respect to mass
(similar to moments and products of inertia).

0, j#k

Juj(x) uy (x) dm :{L Pk

The general response of the system can be
written as a sum of modal responses

w(x, 1) = zan(t) Up (x)

where w(x,t) is the displacement and q,,
gives the “amount” of the nth mode.

For force F at frequency @ applied at point
x, and response w measured at point y, the
transfer function is

w Uy (x) ty (y)
H(x,y,0)=—= ) "=
Fo2 0, -0

(with no damping), or

HEMH/RSL/DC/IJW 2003



() (1)

w, +2zcoa)n§n

H(j.k )

L3

n

2

(with small damping) where the damping
factor ¢ is as in the Mechanics Data Book
for one-degree-of-freedom systems.

6. Pattern of antiresonances

For a system with well-separated resonances

(low modal overlap), if the factor uj(”)uk(”)

has the same sign for two adjacent resonances
then the transfer function will have an
antiresonance between the two peaks. If it
has opposite sign, there will be no
antiresonance.

7. Impulse response

For a unit impulse applied at # = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

(n),, (n)
U uj
g(jaka[): Asjna)n[

n wl?
(with no damping), or

(), (n)
u uy B
g(j’k’ f) = / k Sin a)nt e a)l’lgl’l[
w

n n
(with small damping).
8. Step response

For a unit step force applied at £ = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

h(jk.t)= Zuj<”)Ltk(”‘) [1-cosw,t]
n

(with no damping), or

h(j k1) = Zuj(n)uk(ﬂ) [] cos@,t e—a)ni;nt]
n

(with small damping).
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H(x y, @
wy, +2za)a)n§n

)

(with small dampmg) where the damping
factor ¢, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

2

For a system with low modal overlap, if the
factor u,(x) u,(y) has the same sign for two
adjacent resonances then the transfer function
will have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.

For a unit impulse applied at 7 = 0 at point x,
the response at point y is

) — 2 I’tn(x) Mn,(y)

X, y,t Sin @yt
&( o, n
n
(with no damping), or
g(x,y,1) = Z———M”(x) ) G ! ¢~ Pnbnt

@
n n

(with small damping).

For a unit step force applied at = 0 at point
x, the response at point y 1s

h(x,y,t) = Zu” (x) () [1 = cos 1]

n

(with no damping), or

= El/ln(X) Mn(y) [1 —CosSw,t e_wnz:nt]
n

(with small damping).
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Governing equations for continuous systems

Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,?), applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
9% w 0% 1 [8W}2 1 {é’w ]2

m —P—=f{x,t V==—P|| — | dx T=—m||l—| dx
a7 P T ;"] ox | o

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius «, internal radius b if shaft is hollow, angular
displacement 6(x,1), applied torque f(x,) per unit length.

Polar moment of area is J = (7 / 2)(614 - b4).

Equation of motion Potential energy Kinetic energy
2’0 . 9°6 1 [aejz 1 {aejz
J—=—-GJ—5 = f(x,t V==GJ||— | d I'=—pJ| —| d
P or* ox* Jten 2 J o) 7 2P [ o)

Axial vibration of a rod or column

Young’s modulus £, density p, cross-sectional area A, axial displacement w(x,t), applied
axial force f(x,r) per unit length.

Equation of motion Potential energy Kinetic energy
9% 92w 1 £8wjz 1 (8w 2
A —EA—5 = f(x,t V=—FA||l — | dx T'=—pA|ll —| d
PAGE TG T Al PG ) &

Bending vibration of an Euler beam

Young’s modulus £, density p, cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,), applied transverse force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2
9w d*w 1o 0%w 1 [8w]2
A——+ El—F = f(x,t V==—FEl| —5 | dx T=—pAll — | dx
PAGE TG =D 2 J{aﬁ 415

Note that values of I can be found in the Mechanics Data Book.
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ENGINEERING TRIPOS PART IIB
Module 3C6 Examination, 2006

Answers

(b) x=0, =0; x =L, dfldx=0. m,;F(mlJ%; un(x)=sin(n+%J%

yo, 2
2 2
©) Ka—?:—GJ% at x=L; tankl=22, with k=L
ot ox Kk G
1\ . EL EI
b o'~ nt=| 2t 2 =504
®) @, (" 2} Pl ©@© mL’
1(3 ., 3 ., 1., 1 » 3m[10 2 ~1
a) T=—|—my; +—my, |, V==kyi +=k(y,-»);: — 4
®) 2(2 T yz] Yo+ k(- 0) 2[01 11
(b a)2=£[li—§]; [0.618 1] ; [-1.618 1]
m

(¢) 0.33rads; (d) 0.28 rads
@ T =%J(é,2 +60+62+6; +6552)

- Li](6,-0) +(0,-6) +(0-0) +(0-0) +(0-6.) ]

k
() o~ 0.47



