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Module 3C7

MECHANICS OF SOLIDS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment:
Special datasheet (2 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you may
do so by the Invigilator




2 -
1 (a) Discuss the conditions under which a thin circular disk has circular

symmetry. [15%]

(b) Starting from the general expressions of equilibrium provided on the
datasheet, show that for a thin circular disk with circular symmetry, the equilibrium
equation expressed in polar coordinates (r,8) is given by

do
r drr =009 —Opr
r
where o,, and oy are the radial and hoop stresses, respectively. [15%]

(c) Starting from the general compatibility equations provided on the datasheet,
show that for the circular disk described in (b), the compatibility equations reduce to

degg
d =& —E00
v

r

where ¢,, and gyy are the radial and hoop strains, respectively. [25%)]

(d) Consider a thin circular plate with a central hole of radius a. The plate is
made of material with Young’s modulus E, Poisson ratio v and coefficient of thermal
expansion ¢ . Upon non-uniform heating, the distribution of temperature in the plate,
initially at uniform temperature 7j, is 7'(r). Express the stress versus strain

relationships for the heated plate in polar coordinates. [15%]

() With u denoting the radial displacement, the equilibrium equation for the
hollow circular plate described in (d) is expressed as

_(_i_[l d(ur)

d(T-Ty)
dr| v dr dr '

}=(l+v)a

Solve for the displacements in the heated plate. [30%]
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2 (a) A thin plate with a small triangular protrusion on one side is subjected to
uniform tension o at the ends, as shown in Fig. 1(a). Under plane stress conditions,
show that the triangular protrusion is stress free (you may assume that the stress state in
the remainder of the plate is unaffected by the presence of the triangular protrusion). [20%)]

(b) The tensile stress o acting on the plate of Fig. 1(a) is replaced by an in-
plane hydrostatic pressure p .

(i)  Assuming plane stress, show that the stress field

Oxxy =0y, ==P, Oy, =0

satisfies both the equilibrium equations as well as the boundary conditions. ~ [25%)]
(ii) Find the strain field in the plate, and hence the displacement field. [30%]

(iii)) Show that the strain field obtained in (ii) satisfies the compatibility
condition. [10%)]

(iv) A circular hole is now drilled in the plate of Fig. 1(a) as shown in
Fig. I(b). In addition to the in-plane pressure p acting on the external
surface of the plate, the surface of the hole is also subjected to a uniform in-
plane pressure p . Comment on how the solutions in (i) and (ii) will change. [15%)]
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3 A light uniform cantilever of depth 2b and length L is shown in Fig. 2. This
cantilever is loaded by a uniform normal force per unit length ¢ on the top and bottom

surfaces. A candidate Airy stress function for representing the stress field in this
cantilever is

A4d 23 B3 C o D 5
=X Y =y ="y +
b= XY AT IRy

where 4, B,C and D are constants.

(a) Determine the relationship between 4 and D for ¢ to be a valid Airy
stress function. [15%]

(b) For a stress field that satisfies the boundary conditions, determine the
constants A4, B,C and D in terms of ¢ and b». Hence also determine the stresses

Oxx,Tyy and oy,,. [40%]

(c¢) Show that the stress field obtained in (b) gives the correct shear force
distribution along the length of the cantilever. [20%]

(d) Determine the bending moment due to the stress field obtained in (b) at
x = 0. Hence, appropriately modify the stress field obtained in (b) in order to satisfy

boundary conditions at the free end of the cantilever. [25%]
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4  (a) State briefly
(i)  the upper bound theorem; and [15%]

(i) the lower bound theorem [15%]

of plasticity theory.

(b) Consider a square plate of side 2b containing a central circular hole of

radius a as sketched in Fig. 3. The plate is made from a rigid ideally-plastic Tresca
material with a tensile yield strength Y . A uniform in-plane pressure p is applied to the

surface of the hole. Assume plane strain conditions and an axi-symmetric displacement
field with a radial displacement

u=—
r

where A is a constant and r the radial ordinate measured from the centre of the plate.

(i)  Calculate the external work done by the applied pressure. [20%]

(i) By considering a 45° segment of the plate, calculate the internal
plastic dissipation in the plate, and hence determine an upper bound to the
pressure p required to collapse the plate.

[Hint: | (;” *In(cos8) d6 = ~(x/4) In2+0.458] [40%]

(ii1) Briefly discuss the accuracy of the collapse pressure calculated above. [10%]
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ELASTICITY and PLASTICITY FORMULAE

1.  Axi-symmetric deformation : discs, tubes and spheres

Equilibrium

Lamé’s equations (in elasticity)

Spheres

1 d(r2cy)
O = 2r dr

Discs and tubes

d(roy)
Opg = Tn_ + pa)2r2

2. Plane stress and plane strain

Strains

Compatibility

or (in elasticity)

Equilibrium

V4¢ = 0 (in elasticity)

Airy Stress Function
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Cartesian coordinates Polar coordinates

du du
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3.  Torsion of prismatic bars

. dF dF
Prandtl stress function: 0, (=7Tx) = & o Oy =t =-F
Equilibrium: T = 2fFda
A
Governing equation for elastic torsion:  V2F = -2Gf where f is the angle of twist per unit length.

4. Total potential energy of a body
N=U-W

1 .
where U =3 j eTDlegdv , W=PTy  and [D] is the elastic stiffness matrix.
14

5.  Principal stresses and stress invariants

Values of the principal stresses, op, can be obtained from the equation

Oxx — Op Oxy Oxz
Oy  OGy~—Op Oy =0
Oxz Oyz Oy — Op

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.

3

Expanding: 0p3 ~ Iy 0p? + Ipop — I3 = 0 where I} = Oyxx + Oyy + Og,

Oxx Oxy Oxz

Oxx  Oxz Oxx  Oxy

and Iy = | %y Oy Oy
Oxy Oyy

Ou Oy On

Oyy Oyz
Ip =

Oyz Oz

Oxz Op

6. Equivalent stress and strain

N T
Equivalent stress & = \/% ((01-0)* + (02~ + (o3~0p)?, 2

. " - 2 12
Equivalent strain increment de  ="\[3 ( d&i? + dep? + de3?,

7.  Yield criteria and flow rules

Tresca

Material yields when maximum value of lo] — o3l, 10 — 03l or loz3— 01l = Y = 2k, and then,

if o3 is the intermediate stress, dej:dey:des = A(1:~1:0) where A #0.

von Mises

Material yields when, (01 — 02)2 + (02— 3)? + (03-01)2 = 2Y2 = 6k2, and then
dg dey dey dep —dey dey —des des —dey _?ld_é
6 = T T 0 T o-m; T o-03 - o-op = A=12F
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Answers to 3C7: Mechanics of Solids (2005-2006)

1. (e) u =c2r+§i+(1+v)3£mrdr
14 Vv

3. (a)D:-%

4, )YQ) W =2mpA

®)G) p, =£[ﬁln2—b—o.4ssj
z\4 a



