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1 Figure 1 outlines a mechanism that can be used to predict the short-term stresses
and strains in the ground due to the excavation of an unlined cylindrical tunnel of radius
a, with its axis at depth b within uniform clay of undrained shear strength ¢, and unit
weight 7. A circular segment around the vertical plane of symmetry can be considered to

be in an approximate state of cylindrical cavity reduction.

(a) Using a free body diagram, show that the differential equation for

equilibrium inside the segment is:

dar + (ar _0-0)=
dar r

where o, is the radial stress, oy is the circumferential stress and r is the radial distance

-7

from the centre of the cavity.

(b) Develop expressions for the shear strain g, of the clay at the cavity
boundary in terms of the depression p, at the cavity crown, and for shear strain ¢, at any

radius as a function of &,.

(c) The shear stress-strain relation for the clay prior to ultimate shearing at 7=c,

for &, < g, r can be taken to be:

Derive an expression linking maximum ground settlement py to parameters a, b, y ¢, f

(d) Simplify this for the particular case f = 0.5, and use this to estimate the
maximum settlement caused by boring an unlined 5 m diameter tunnel with its axis at

10 m depth in clay with a shear strength of 100 kPa mobilised at a shear strain of 2%.
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2 (a) A clay has properties closely resembling those of London Clay given in the
Data Book. A triaxial element of the clay is one-dimensionally normally consolidated
from a slurry state O’ to state A’ (' = 200 kPa) and is then permitted to swell one-
dimensionally to state B' (0, = 50 kPa). Calculate the corresponding horizontal
effective stresses at A’ and B’ and sketch the state path O'—A’ —B’ on both (6, a')
and (g, p') diagrams. Mark critical state stress ratios on both diagrams, distinguishing in

each case between compression and extension.

(b) When the soil at B’ is subjected to an undrained compression test it remains
quasi-elastic up to a deviatoric stress ¢ = 65 kPa at state C' before yielding, and

ultimately shears in state D’ at constant g, = 70 kPa. Mark these state points on both

(o, o') and (g, p') diagrams.

(c) The same soil is at effective stress state B’ in the field at a depth of 2 m,
with a water table at a depth of 3 m below the horizontal surface of the clay. A 3 m deep
vertical cut is excavated. The clay adjacent to the cut at a depth of 2 m comes to a new

effective stress state E'. Show total stress states B and E, and effective stress state E’, on

each of the (&', o,') and (g, p') diagrams.

(d) Discuss the stability of the face in the long term, extending your stress paths

as appropriate.
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3 The offshore structure shown in Fig. 2(a) is supported on 2 strip foundations, of
width, b, and length, /, which can be idealised as imposing plane strain (/ >> b). The
seabed is uniform clay, with undrained strength c,. The vertical load due to the weight
of the structure, ¥V = 3blc,.

(a) If the foundation-leg connections are idealised as pin-joints, and the
foundations cannot sustain tension, calculate the horizontal load, H, applied at a
distance, a, above the seabed, which will cause undrained failure when the vertical load,

V, acts centrally. You may ignore interaction between the foundations, and assume that
the foundations mobilise equal horizontal reactions. State the mode of failure, and draw
the load paths on a V-H interaction diagram. [35%]

(b) To increase the maximum horizontal load that can be resisted, the weight of
the structure can be increased and redistributed by pumping water into ballast tanks.
Calculate the value of H that will cause failure, if the weight is increased to V = 4blc,,
and the line of action of V is moved by a distance ¢, (see Fig. 2(a)), where ¢ = 3a/8.
State the mode of failure, and draw the load paths on a V-H interaction diagram. [35%]

(¢) To upgrade the foundation capacity, each strip foundation is equipped with
an impermeable skirt, penetrating a distance 5/2 into the seabed as shown in Fig. 2(b).

Explain two mechanisms by which this modification will alter the foundation capacity.  [15%]

(d) Write an expression for the pure vertical load that will cause failure of the

modified structure. [15%)]
i I
! I
! 14
H—||V Y ' l
e b\llz ZZANY
i — sl b
blet 15 PZANY _T_ .
e Skirt
a
(a) (b)
Fig. 2
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4 The rigid cantilever gravity wall shown in Fig. 3 is made from reinforced concrete
and is embedded in dry sand. The sand has a friction angle, ¢= 35°, and a unit weight of
y=20kN m™, The wall has a unit weight of %, =25 kN m™. The base of the wall has
a concrete-soil friction angle of Jnc= 20°.

10m

A [

T

m

Fig. 3

(a) Using Rankine’s lower bound method, and assuming that the wall has a
‘virtual back’ AB, calculate the net overturning moment acting about C due to the
lateral earth pressures. [20%)]

(b) By considering the restoring moments due to the weight of the wall and the
enclosed soil, calculate the factor of safety against overturning failure about C. [25%]

(c) Calculate the effective contact width, using Meyerhof’s method. Discuss
and illustrate, using a failure envelope, how the foundation AC of the wall should be
checked for stability under this combination of loads. [30%]

(d) Explain why the active pressure at failure could be less than the value
calculated in part (a). Sketch and describe an alternative stress field behind the ‘virtual
back’ of the wall, but do not perform any calculations. [25%]

END OF PAPER
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General definitions

onsidered as

Soil structure

Specific gravity of solid
Voids ratio

Specific volume
Porosity

Water content

Degree of saturation

Unit weight of water

Unit weight of soil

Buoyant saturated unit weight

Unit weight of dry solids

Air volume ratio

*.
\%
\Y VW
_).
Vs
Volumes Weights
G
e = V,/V;
v = Vt/Vs =] +e
n = V,/Vy=¢ell + e
w = (Wy/Wy)
S; = Vy/V, = (wGye)
Yw = 9.81 kKN/m3
G, +S_e
- Wy, - (Gt
Y t/ Vit 1 + e Yw
e (8
Y Y — Tw 1+ o Tw
G
Ya = Ws/Vy = (1 _:e) Tw
e(l-5S,)
A = Va/Vt l+e
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Soil classification (BS1377)

Liquid limit

Plastic Limit

Plasticity Index

Liquidity Index

Activity =

i

Sensitivity

WL

wp

IPZWL-—WP

Wp —Wp

Plasticity Index
Percentage of particles finer than 2 pm

Unconfined compressive strength
of an undisturbed specimen

. at the same water content
Unconfined compressive strength ( )

of a remoulded specimen

Classification of particle sizes:—

Boulders larger than 200 mm
Cobbles between 200 mm and 60 mm
Gravel between 60 mm and 2 mm
Sand between 2 mm and 0.06 mm
Silt between 0.06 mm and 0.002 mm
Clay smaller than 0.002 mm (two microns)

Dy, D¢ etc.

Cu

equivalent diameter of soil particle

particle size such that 10% (or 60%) etc.) by weight of a soil sample is composed of
finer grains.

uniformity coefficient Dgg/ Dy

Soil Mechanics Data Book



Seepage

Flow potential:
(piezometric level)

Total gauge pore water pressure at A:

B:
Excess pore water pressure at A:
B:
Hydraulic gradient A — B
Hydraulic gradient (3D)

Darcy'slaw V = ki
\%

k

Typical permeabilities:

Dig > 10 mm
10mm > Dyg > 1um
clays

Saturated capillary zone
4T

h, =
v.4

w

3x107°
Dlo

~

he ~

et

el

WYY Datum

h+Ah

Yoh = v(h + 2)

+ Au = yy(h+Ah) = v, (h + z + Ah + A7)

superficial seepage velocity
coefficient of permeability

non-laminar flow
k = 0.01 (Dyg in mm)?2 m/s
k = 109 to 1011 m/s

~

capillary rise in tube diameter d, for surface tension T

. for water at 10°C; note air entry suction is U, = - Yy he

Soil Mechanics Data Book



One-Dimensional Compression

e Fitting data

Typical data (sand or clay)

esrl

ncl

logc'

Mathematical model

\'%
Vo
A
Vk
K \
o =1kPa Ing' Inc

Plastic compression stress ¢’ is taken as the larger of the initial aggregate crushing stress and the
historic maximum effective vertical stress. Clay muds are taken to begin with o', ~ 1 kPa.

Plastic compression (normal compression line, ncl):

Elastic swelling and recompression line (esrl):

Equivalent parameters for log) stress scale:
Terzaghi’s compression index

Terzaghi’s swelling index

® Deriving confined soil stiffnesses

Secant 1D compression modulus

Tangent 1D plastic compression modulus

Tangent 1D elastic compression modulus

= vy -Alndo foro’'=0o’,

v=v, +x(lnc’, - Inc'y)

= v - klnao'y foro’' < o'

C.= Aloge

(e}

Cs =« logjee

E,= (Ac' /Ag),
E,= vo'/A

E,= vo'/x

Soil Mechanics Data Book



One-Dimensional Consolidation

Settlement P = J' m,(Au-t)dz = J' (Au-T)/E, dz
Coefficient of consolidation Cy - _K _ KB,

mV 7W 7W
Dimensionless time factor T, = c"zt

d
Relative settlement R, R

Puit

¢ Solutions for initially rectangular distribution of excess pore pressure

increment Ac -

v HENER 1 Buzbe 3
watet ? vllvlllvz t=0.
e T 7w of
é | % dl bau
% /B
v isochrones of excess

pore pressure in two
phases (i) and (ii)

Approximate solution by parabolic isochrones:

Phase (i) L2 =12ct

R, = "4:‘, fOI'TV<l/12

Phase (ii) b = exp (%4 — 3T,)

R, =[1-"/3 exp(% -3T)] for Ty > /1,

Solution by Fourier Series:

Ty 0 0.01 {0.02 |0.04 {0.08 |0.15 |0.20 [0.30 {0.40 | 0.50 | 0.60 | 0.80 | 1.00

R, 0 0.12 [ 0.17 {023 {032 |045 {051 [0.62 [0.70 | 0.77 | 0.82 |0.89 | 0.94

Soil Mechanics Data Book



Stress and strain components

¢ Principle of effective stress (saturated soil)

total stress ¢ = effective stress ¢’ + pore water pressure u

¢ Principal components of stress and strain

sign convention compression positive
total stress 1, 02, C3
effective stress cl, 6}, o}
strain €1, €2, €3
e Simple Shear Apparatus (SSA) (g2 = 0; other principal directions unknown)

The only stresses that are readily available are the shear stress T and normal stress ¢ applied to
the top platen. The pore pressure u can be controlled and measured, so the normal effective stress
¢’ can be found. Drainage can be permitted or prevented. The shear strain y and normal strain €
are measured with respect to the top platen, which is a plane of zero extension. Zero extension
planes are often identified with slip surfaces.

work increment per unit volume oW= 1déy+ o'de

¢ Biaxial Apparatus - Plane Strain (BA-PS) (e; = 0; rectangular edges along principal axes)

Intermediate principal effective stress o', in zero strain direction, is frequently unknown so that
all conditions are related to components in the 1-3 plane.

mean total stress s = (o] + 03)2

mean effective stress s = (o +03)2=s5-u
shear stress t = (o —03)2 = (o) — 03)/2
volumetric strain &y = g t &

shear strain €& = € — &

work increment per unit volume OW= o0©0g; + 03'0¢3

OW = s'0g, + tdg,

providing that principal axes of strain increment and of stress coincide.

Soil Mechanics Data Book
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® Triaxial Apparatus — Axial Symmetry (TA-AS) (cylindrical element with radial symmetry)

total axial stress G, = O +u

total radial stress G, = O +u

total mean normal stress p = (op+ 20)/3
effective mean normal stress p = (ca +20;)3=p—-u
deviatoric stress q = 6 — Oy = G, — C;
stress ratio n = q/p

axial strain €,

radial strain £

volumetric strain g = g + 2¢

triaxial shear strain €& = %(ea — &)

work increment per unit volume W = o0,'0g, + 20, 0¢;

O6W = p'de, + qogs

Types of triaxial test include:
isotropic compression in which p’ increases at zero q

triaxial compression in which q increases either by increasing ¢, or by reducing o,

triaxial extension in which q reduces either by reducing o, or by increasing o,

® Mohr's circle of stress (1-3 plane)
Sign of convention: compression, and counter-clockwise shear, positive

= +ve

Y] T

Y plane P Y

/_/ X plane
N
'rxy/] / 03 l 01 (o}

, \9 _/ N plane
| t

O'xx X
= CAEAY
s
Ovyy
X

Poles of planes P : the components of stress on the N plane are given by the intersection N of
the Mohr circle with the line PN through P parallel to the plane.

Soil Mechanics Data Book



Elastic stiffness relations

These relations apply to tangent stiffnesses of over-consolidated soil, with a state point on some
swelling and recompression line (k-line), and remote from gross plastic yielding.

One-dimensional compression (axial stress and strain increments do’, de)

compressibility m, = d%o"
constrained modul E, =
rained modulus o }{nv

Physically fundamental parameters

o dt
shear modulus G = ASY
bulk modulus K' = dly

de,

Parameters which can be used for constant-volume deformations

undrained shear modulus G, = G

o (neglecting compressibility of water)

undrained bulk modulus Ky

Alternative convenient parameters
Young's moduli E' (effective), E, (undrained)
Poisson's ratios V' (effective), v, = 0.5 (undrained)

Typical value of Poisson’s ratio for small changes of stress: v/ = 0.2

N _ E
Relationships: G = 2(1+v)

_E
T 3(1-2v)

E(1-v)
1+v)y(1-2v)

E, =

Soil Mechanics Data Book



Cam Clay
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¢ Interchangeable parameters for stress combinations at yield, and plastic strain increments

System Effective | Plastic Effective | Plastic Critical Plastic Critical
normal normal shear shear stress normal normal
stress strain stress strain ratio stress stress

General o* g* * y* P e o*, 0% it

SSA G € T Y tan Qcrit o', O crit

BA-PS s £ t & Sin Qeric s’ S crit

TA'AS p' Ey q €s M p' c p' crit

® General equations of plastic work

Plastic work and dissipation o* dc* + T*&y* = p¥* o™ Oy
. . dt* dy=* _
Plastic flow rule — normality . = -1
do* de*
¢ General yield surface
*
T_* = u* = u*crit . ln I:Gc ]
c*® G *
¢ Parameter values which fit soil data
London Weald Kaolin Dog’s Bay  Ham River
Clay Clay Sand Sand

Ax 0.161 0.093 0.26 0.334 0.163

K* 0.062 0.035 0.05 0.009 0.015

I'+ at1kPa {2.759 2.060 3.767 4.360 3.026

O* virgin kP2 |1 1 1 Loose 500 Loose 2500

Dense 1500 Dense 15000

Perit 23° 24° 26° 39° 32°

Mcomp 0.89 0.95 1.02 1.60 1.29

Mextn 0.69 0.72 0.76 1.04 0.90

WL 0.78 0.43 0.74

wp 0.26 0.18 0.42

G, 2.75 2.75 2.61 2.75 2.65

Note: 1) parameters A*, x*, I'* o*; should depend to a small extent on the deformation mode, e.g.

SSA, BA-PS, TA-AS, etc. This may be neglected unless further information is given.
2) Sand which is loose, or loaded cyclically, compacts more than Cam Clay allows.

Soil Mechanics Data Book
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¢ The yield surface in (c*, 1%, v) space

A
T* csl
’Y* . -
¥ erit ncl: normal compression line
v = N—-Alno*
yield L .
surface csl: critical St;te I;nf ,
v=1l—-Alno
. =4 68*, 6'}/*
astic
Hline where N =T+A-x
E 3 X »
crit (o} c o-*, 8*
v ‘r v A
= ncl
csl
O ¥ crit o¥; Ino* Ino*,

¢ Regions of limiting soil behaviour
Variation of Cam Clay yield surface

* s csl Zone D:denser than critical, “dry”,
y* ! dilation or negative excess pore pressures,
A I ¥ erit Hvorslev strength envelope,

friction-dilatancy theory,
C’ unstable shear rupture, progressive failure
Sf’,i dy Zone L: looser than critical, “wet”,
" compaction or positive excess pore pressures,

ielastic

L™, Modified Cam Clay yield surface,
- K > stable strain-hardening continuum
T O erit o*, -
: o* €
tension
failure
(6} '3 =0

Soil Mechanics Data Book
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Strength of soil: friction and dilation

e Friction and dilatancy: the saw-blade model of direct shear

resultant | sliding
force i displacement
1 macro
— [ — slip-suface

Intergranular angle of friction at sliding contacts ¢,
Angle of dilation Wpax

Angle of internal friction ¢max = P + Wmax

e Friction and dilatancy: secant and tangent strength parameters

T T
Tuit Tu t
il critical state line i critical state line
77\ el N\
¢max -7
G,Cﬁt 0-’ O-'Cl'it GI
Secant angle of internal friction Tangent angle of shearing envelope
T = G tan ¢max T =c +c'tan¢’
Omax = Qcrit + Ad ¢ = f(0'crir)
Ad = f(0'ci/c")
typical envelope fitting data: typical envelope:
power curve straight line
(t/Terit) = (616" erie)™ tan ¢' = 0.85 tan ¢eric
with a = 0.85 ¢ = 0.15 Tt

Soil Mechanics Data Book
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® Friction and dilation: data of sands
The inter-granular friction angle of quartz grains, ¢, ~ 26°. Turbulent shearing at a critical state
causes ¢.¢ to exceed this. The critical state angle of internal friction ¢t is a function of the

uniformity of particle sizes, their shape, and mineralogy, and is developed at large shear strains
irrespective of initial conditions. Typical values of ¢ (£ 2°) are:

well-graded, angular quartz or feldspar sands 40°
uniform sub-angular quartz sand 36°

uniform rounded quartz sand 32°

(€max — €)

D~ (émax — €min) where:

Relative density I

€max 1S the maximum void ratio achievable in quick-tilt test
€min 1S the minimum void ratio achievable by vibratory compaction

Relative crushability I¢c = In (6 p’) where:

o, is the aggregate crushing stress, taken to be a material constant, typical values being:
80 000 kPa for quartz silt, 20 000 kPa for quartz sand, 5 000 kPa for carbonate sand.

p’ is the mean effective stress at failure which may be taken as approximately equal to the
effective stress ¢’ normal to a shear plane.

Dilatancy contribution to the peak angle of internal friction is A} = (dmax — Perit) = T(IR)
Relative dilatancy index Ig = IpIlc—1 where:

I <0 indicates compaction, so that Ip increases and Iz — O ultimately at a critical state
IR >4 tobelimited to Ix =4 unless corroborative dilatant strength data is available

The following empirical correlations are then available

plane strain conditions (Pmax — Pcrit) = 0.8 Ymax = 51Ir degrees
triaxial strain conditions  (Qmax — Ocrit) = 3 Ig degrees
all conditions (-0, / 881)max = 031x

The resulting peak strength envelope for triaxial tests on a quartz sand at an initial relative density Ip
= 1 is shown below for the limited stress range 10 - 400 kPa:

/
¥ max /
kPa A
P
3001 /A—d) crit
Omax > et +9°  for Ip=1, ¢’ = 400 kPa
2001
100 1
dcrit T9 degrees

100 200 300 400 o'kPa
Soil Mechanics Data Book
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® Mobilised (secant) angle of shearing ¢ in the 1 —3 plane

T

Angle of shearing resistance:
oy
at peak strength ¢, at [—— ]
0'3' max

at critical state ¢; after large shear strains

® Mobilised angle of dilation in plane strain y in the1-3

VZ

y4

ogq Ot

at peak strength ¢ = ypax at [11_]
0'3' max

at critical state ¢ = 0 since volume is constant

sing = TS/OS
_ (o1-03)2
" (of+o3)/2
o'7_ (+sing)
[03'] (1-sing)
plane
siny = VO/VZ
_ (881 + 883)/2
T (8g1 - %e3)/2
. %
= %,
o 1. (-siny)
0€, ] (1+siny)

Soil Mechanics Data Book
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Plasticity: Cohesive material 7, = c, (or s,)
® Limiting stresses
Tresca |0'1 - 0'3| = qu = 2¢y

2
vonMises  (c1-p)? + (62-p)? + (G3-p)? = 3 qﬁ = 2031

where q, is the undrained triaxial compression strength, and c, is the undrained plane shear
strength.

Dissipation per unit volume in plane strain deformation following either Tresca or von Mises,
dD = ¢, 0gy

For a relative displacement x across a slip surface of area A mobilising shear strength c, , this
becomes

D = Acyx

¢ Stress conditions across a discontinuity

Rotation of major principal stress 6

T
Sg — SA = As = 2¢,sin 0
Cu OB — OC1A T ZCuSiIIG
p
o In limit with 6 — 0
ds = 2¢,d6
Useful example:
|
| O4A 0 = 30°
45_6/2-\: D C1B — O1A= Cu
A T i _
D ;V D D Tp/cy = 0.87
o [T
/\ G1A= major principal stress in zone A
%18 ;9 . o _
discontinuity o618 = major principal stress in zone B

Soil Mechanics Data Book
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Plasticity: Frictional material (t/6')pax = tan ¢’

¢ Limiting stresses

sing = (c'1r- 0°30)/(0” 1+ G”3¢) = (C1£- O3p)/(C15 + O31- 2Uy)

where ¢'1r and ¢’3r are the major and minor principal effective stresses at failure, 615 and o3¢ are the
major and minor principle total stresses at failure, and us is the steady state pore pressure.

Active pressure: 6y, >0}
o} =o', (assuming principal stresses are horizontal and vertical)
03 =0},

Ka = (1 —sing)/(1+sing)

Passive pressure: 6}, > oY
6] = o}, (assuming principal stresses are horizontal and vertical)
1

03 =0y
Kp = (+sin ¢)/(1-sin ¢)=1/K,

® Stress conditions across a discontinuity

Rotation of major principal

T stress
¢ 0 =n2-Q
D
o : 1A = major principal stress
T in Zone A
D
)
o1p = major principal stress in

1 zone B

SA' op OiA SB' O4 o’

A tand=1p/0’p

sin Q= sin 8/ sin ¢

s’p/s’ a4 = sin(Q + d) / sin(Q2 — J)
In limit,d0 — Oandd — ¢
ds’=2s’.dO tan ¢

Integration gives s’g/s’a = exp (20 tan ¢)

Q- 82/

Soil Mechanics Data Book
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Empirical earth pressure coefficients following one-dimensional strain

Coefficient of earth pressure in 1D plastic compression (normal compression)

Ko,nc =1- sin (bcn't

Coefficient of earth pressure during a 1D unloading-reloading cycle (overconsolidated soil)

(n-1)(n%,, —1)}

K, =K 1+
° o,ncli (D pmax —1)

where n is current overconsolidation ratio (OCR) defined as ai,’max /oy

1 ]
N ax 18 maximum historic OCR defined as oy 4 / Oy min

o is to be taken as 1.2 sin ¢t

Cylindrical cavity expansion

Expansion 6A = A — A, caused by increase of pressure 86, = 6, — G,

OA
Atradiusr:  small displacement = o
2
small shear strain vy = ‘;,E
. ey dor
Radial equilibrium: 14 tor—o0p= 0
. . . dA
Elastic expansion (small strains) oo, = G"A"
. . . . G 0A
Undrained plastic-¢lastic expansion 8o, = ¢, 1+1nc—+1nx

Soil Mechanics Data Book
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Shallow foundation design
Tresca soil, with undrained strength s,

Vertical loading

The vertical bearing capacity, g5, of a shallow foundation for undrained loading (Tresca soil) is:
Vi
—& =q,=s.d Ns +vh
A qf cer cYu Y
Vut and A are the ultimate vertical load and the foundation area, respectively. h is the embedment of the

foundation base and y (or ¥') is the appropriate density of the overburden.

The exact bearing capacity factor N, for a plane strain surface foundation (zero embedment) on uniform soil
is:

N.=2+mn (Prandtl, 1921)
Shape correction factor:
For a rectangular footing of length L and breadth B (Eurocode 7):
se=1+02B/L |
The exact solution for a rough circular foundation (D =B = L) is q¢= 6.05s,, hence s;=1.18 ~ 1.2.
Embedment correction factor:
A fit to Skempton’s (1951) embedment correction factors, for an embedment of h, is:
d.=1+033tan’ (WB) (or /D for a circular foundation)
Combined V-H loading

A curve fit to Green’s lower bound plasticity solution for V-H loading is:

2
\'% 1 1 H H
If V/Vy > 0.5: —=—+—|1-— or ——=1—[21——1J
Vult 2 2 Hult Hult Vult
IfV/Vy <0.5: H=H,=Bs,

Combined V-H-M loading

With lift-off: combined Green-Meyerhof

2 2 3
A" M
Without lift-off: (—J +[ (1 -0.3 H )J + ( H ) -1=0 (Taiebet & Carter 2000)
It t

ult ult

u

Soil Mechanics Data Book
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Frictional (Coulomb) soil, with friction angle ¢
Vertical loading

The vertical bearing capacity, g, of a shallow foundation under drained loading (Coulomb soil) is:

The bearing capacity factors N, and N, account for the capacity arising from surcharge and self-weight of the
foundation soil respectively. o'y is the in situ effective stress acting at the level of the foundation base.

For a strip footing on weightless soil, the exact solution for N is:
N, = tan’(n/4 + ¢/2) =9 (Prandt] 1921)

An empirical relationship to estimate N, from N, is (Eurocode 7):

N,=2(Ng-1)tan ¢
Hor MB
Curve fits to exact solutions for ' Failure envelope
N,= f(¢) are (Davis & Booker 1971): — i
Maximum I Po : -
Rough base: N, =0.1054 e’ H o VoV
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Shape correction factors:

For a rectangular footing of length L and
breadth B (Eurocode 7):

sq=1+(Bsin¢)/L
s;,=1-03B/L

For circular footings take L. = B.

Combined V-H loading

The Green/Sokolovski lower bound solution
gives a V-H failure surface.

Combined V-H-M loading
With lift-off- drained conditions - use Butterfield & Gottardi (1994) failure surface shown above
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where C= tan( 2p(t, _Ztm)(th al tm)) (Butterfield & Gottardi, 1994)
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Typically, t,~0.5, t,~0.4 and p~15°. Note that t;, is the friction coefficient, H/V= tan¢, during sliding.
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Question 1: Cylindrical cavity collapse analysis of tunneling-induced settlement

(a) Proof

b  g,=-—F,8=-——=-28,
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(d) Pp=6.25 mm

Question 2: Stress paths in clay, collapse of a vertical cut

(a) A': o%,=121.8 kPa, p' = 147.9 kPa, q = 78.2 kPa
B’: o',= 58.5 kPa, p' = 55.6 kPa, q = -8.5 kPa

K, = 0.44, K, =2.28

(b) C': q= 65 kPa, p' = 55.6 kPa, o',= 33.9 kPa, ¢',= 98.9 kPa
: D’: q=170kPa, p' = 78.9 kPa, o', = 55.3 kPa, o', = 125.3 kPa

(c) B: q =-8.5 kPa, p = 45.6 kPa, o, = 48.5 kPa, ¢',= 40 kPa
E: q =40 kPa, p’ = 20 kPa, oy = 0 kPa, 6,= 40 kPa

Question 3: Combined V-H loading of a two-footing structure
(@  H=3ble,2
| (b). H=2ble,
(c) V = 2bl 2+7) d.c, + Y'b/2
Queétibn 4: Stability of a cantilever gravity wall in dry sand
(8 Moveruming = 801 kKNm/m N
() . Mg = 3651 KNm/m , FoS = 4.56

(c) B'=B-2¢=B~-2M/V)=4.6m
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