ENGINEERING TRIPOS PART IIA

Saturday 13 May 2006 9 to 10.30

Module 3D7

FINITE ELEMENT METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment: Special datasheets (3 pages).
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1 The two-dimensional pin-jointed structure shown in Fig. 1 consists of three bars, each
with axial stiffness AE.

(a) Set up the stiffness matrix K which relates the nodal displacements of the
structure  d=[d, d, d, d,] to the corresponding set of external loads

p=[p p, P P [40%]

(b) Show that Kd = p has no solution for p = [1 0 0 O]T . Explain why this load

cannot be equilibrated in the configuration shown. [30%]

(¢) Compute the displacements d due to the loads p=[l 0 -1 O]T. Is d

uniquely defined by the stiffness equations? [30%]
P2 da P+ d4
P d; I T D3 ds
_— — > G —_—
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2 (a) A finite element mesh of six-node triangular elements is used to model a thin,
linear-elastic plate subject to in-plane loads and displacements. Explain what
discontinuities should be expected in the displacement, stress and strain fields predicted by
the finite element model.

(b) Figure 2 shows two elements from a mesh of the type described above. Sketch
the shape functions corresponding to nodes A and B over both elements.

(¢) Derive expressions for the displacement field over the two elements given that
the nodal displacement components are: dgy = 107 mm, d4y=0 mm, ds = 107" mm,
dpy=-1 0~ mm. All other nodal displacement components are zero.

(d) Compute the state of strain at points P; and P, which lie on either side of the
boundary between elements 1 and 2. Both points have approximately the same coordinates
(0 mm, 1.5 mm) but are within different elements.

(¢) The plate has Young’s Modulus £ = 200 kN mm™ and Poisson’s ratio v=0.3.
Calculate the stress oy, acting on either side of a small section of plate which contains both
points P; and P, and lies across the boundary of elements 1 and 2. Is this section in
equilibrium?

| 1 mm | 1 mm | 2 mm 2 mm

I mm @

(TURN OVER

[20%]

[20%]

[20%]

[20%]

[20%]
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3 (a) Groundwater flow in a rock formation is considered. The water flow rate per
unit area in the i-direction, g, is expressed as follows:

oh
=g
AP

where 4 is the hydraulic head and k; is the rock permeability in the i-direction. Show that
the governing equation of three dimensional groundwater flow in a rigid rock formation can
be expressed as follows.

2 2 2
/cxa—lz+/c,a—il+kz?—il-+Q=O
ox* oy 0z

where Q is the source of water per unit volume. [20%]

(b) For the case of one-dimensional flow in the x-direction, show that the weak
form of the governing equation is:

dh

ady ¢
J.b akx -&dx =) %y = (V)1eeda + qu vQdx

where v is a weight function. The flow rate at the end boundaries is ¢ = ¢, at x = a and
g=gpatx=>b. [15%)]

(¢) The hydraulic head /4 and the weight function v are approximated using the
following shape functions:

h::Na’ -%=~—a=Ba
dx dx

v =N, —CQ:ﬁc:Bc
dx dx

(cont.
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where N and B are the shape function matrices, a is the nodal hydraulic head values in
vector form and c is the arbitrary nodal values in vector form. Show the finite element
approximation of the weak form given in (b).

(d) Groundwater is pumped from a rock aquifer using a well. The layered rock
formation at the site is shown in Fig. 3. The well extends down to the middle of rock layer
2. The well in rock layer 1 is cased; that is, water cannot flow into the well in this layer.
Measurements on rock samples taken from the ground show that the vertical permeability is
different from the horizontal permeability. Sketch a finite element mesh that can be used to
compute the steady state hydraulic head distribution inside the rock formations. In order to
reduce computational time, consider symmetry as much as possible.

(¢) For the finite element calculation, the pressure inside the well is prescribed.
Define the boundary conditions of the finite element mesh sketched in (d). Explain how to
evaluate the pumping rate from the computed results.

A Pumped water

Impermeable rock layer
ke=k,=k=~=0

Rock layer 1
klx = kly > k]z

Rock layer 2
ka = ka > k22

Impermeable rock layer
kx=k,=k,~0

Fig. 3

(TURN OVER

[15%]

[25%]

[25%]
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4 (a) Figure 4 shows a simple finite element mesh of a thin plate of thickness ¢
consisting of only two six-node triangular elements. A uniform pressure p is applied to one
side of the plate as shown. Find the equivalent nodal loads at the nodes 1, 2 and 3.

(b) Figure 5 shows a portion of a simple finite element mesh for the analysis of the
stress distribution in a thin plate of thickness ¢ containing a circular hole of radius R. The
mesh is a one quarter model of the plate and is made up of six-node triangular elements.
The edge of the circular hole is represented by the straight, and equal length, lines ABC,
CDE and EFG. If the hole is loaded by an internal pressure p, find the equivalent nodal
loads at the nodes A to G.

ttrtt

END OF PAPER

[50%]

[50%]



Part IIA: Module 3D7 2003-4
Finite Element Methods

Formulae

Force Method
Stress resultants: solve Hr = p and find r = vy + 8x;

then, solve STFSx = —ST(Fry + eg) for x.
Displacements: solve H'd = e, where e = Fr + ;.

Displacement Method
Displacements: solve Kd = p.
Stress resultants: for element %, solve Fir; = e;, where ¢; = (H.)Td..

SP
February 2004
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Basic relationships, for element j :

displacements u=Nd
strains e=Bd
stresses c=De=DB d
stiffness matrix Ki= j BHY' D B! dV
stiffness equations K d = pj
E 1 v 0
Material stiffness (for plane stress) D= =lv 1. 0
l-v l-v
0 0 —
2

S

ng = [(Xr¥s — Xs¥r) + (¥r = Yo)X T (X — X0)¥]2A
Ny = [(Xs¥q — Xq¥s) + (Vs — Yo)X + (Xg — Xs)y]/2A

r ns = [(Xq¥r— Xryg) T (Vg = ¥)X + (X — X)y}/2A
A = area of triangle

t - ng=(1-&)(1 -n)/4
. I R - (L
R ns= (1 +&)(1 +n)/4
Il ne=(1-&)(1 +n)4
q r
T
v ng=(1-&-n)(1-2§-2n)
0.5 =45 (1-5-n)
. t n=5 @5~ 1)
n=4&mn
0.5
ny=n@2n-1)
q r s ny=4n(1-&-n)






3D7 Answers

1442 -1 2 0
AE -1 1 0 0
1. (a)
2V2L| 2 0 1442 1
0 11
b -
1 1 1
L1 1 L 1
(© —| |+ |x or =| |+  |x
EA| -1 1 EA|0 1
1 -1 -1
2. (a)-
(b)-

(c) Element 1: u; = (2-x)(x+y) X 104, v, =0,
Element 2: u; = (2-y)y X 10, vo = (1/2)x(y-2) X 10™*
(d) Element 1: g, =0.5X 10, &,=0, y,, =—1X 10"
Element 2: g, =0, &= 0, 7xy =—1.25X 10"
(e) Element 1: oy = 10.99 N/mm?
Element 2: 6, =0

3. @&b) -
© ( J:BTkadx)a =(N)_q,~(N")_q,+ [N"Qdx

(d) & (H) -

4. (a) px =—(1/6)tpL, px2 = —(4/6)tpL, px3 = —(1/6)tpL, py1 = Py2 = py3 = 0
(b) Node A, 0.0833tpR, 90° from x axis

Node B, 0.345tpR, 75° from x axis

Node C, 0.167tpR, 60° from x axis

Node D, 0.345tpR, 45° from x axis

Node E, 0.167tpR, 30° from x axis

Node F, 0.345tpR, 15° from x axis

Node G, 0.0833tpR, 0° from x axis



