ENGINEERING TRIPOS PART IIA

Thursday 11 May 2.30to 4

Module 3F6

SOFTWARE ENGINEERING AND DESIGN

Answer not more than three questions.
All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated

in the right margin.

There are no attachmentis.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper None

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

2

1 The POSIX PThreads standard provides four core functions to support multi-

threaded programming:

void pthread_mutex_lock(pthread_mutex_t *mutex);

void pthread_mutex_unlock(pthread_mutex_t *mutex);

void pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t ¥mutex)
void pthread_cond_signal (pthread_cond_t *cond);

The mutex type (pthread_mutex_t) is a binary variable used to control access to a
critical section. A thread calling pthread_mutex_lock(mutex) will block until mutex
is in the unlocked state, at which point mutex will be locked and the thread will proceed
into the critical section. On leaving a critical section, pthread_mutex_unlock (mutex)
is called to unlock mutex and allow other threads access.

Condition variables are used to signal events to threads waiting inside critical
sections. When pthread_cond_wait(cond,mutex) is called, mutex is unlocked and
the calling thread is blocked, when it is unblocked it automatically calls
pthread_mutex_lock(mutex). When a thread calls pthread_cond_signal(cond),
one (and only one) of the threads waiting for cond is unblocked. The calling thread is

unaffected.

(a) Explain what is meant by multi-threading and describe the principal hazards

that it introduces.

(b) Define the term ‘critical section’ and explain why some form of operating
system support (such as pthread_mutex_lock) is needed to allow safe access to critical

section.

(cont.

[15%]

[15%]

(¢) Inamulti-threaded C++ program, a bounded buffer class is required to allow
messages to be sent asynchronously between one thread and another. The class has two

principal methods:

void Put(Message m); // put message m into buffer, block if full
Message Get(); // get next message from buffer, block if empty

Assuming that messages are stored in a circular array indexed 0..N-1, provide
implementations of Put and Get using the POSIX primitives given above. [Hint: you
will need one mutex to protect access to the array and two condition variables to deal

with the buffer full and empty states.] [40%]

(d) What problems arise if a thread needs to collect messages from several input

buffers? Describe a solution which does not require polling. [30%]

(TURN OVER

4

2 (a) What is a virtual function? Give an example of how one could be used.

(b) A local ambulance authority is commissioning a software system to manage
its fleet of ambulances and the answering of emergency calls. Part of the specification for

the software reads as follows:

Specification:

The software running in the ambulance control room should allow the user to view a
list of emergencies. The user should be able to select an emergency and view details of the
emergency, in particular the address to which an ambulance should be sent and the nature
of the emergency. The software should display the current locations of all ambulances
in the fleet on a computerised map of the local region as well as a list of ambulances by
identification number. The user should be able to select an ambulance from this list, or
by clicking on its location on the map. When an ambulance is selected, the user should
be able to see details of that ambulance including the details of any emergency it may
be attending and the names of the crew, together with any special skills or equipment
they may have. The user should be able to place a radio call to the ambulance from this
display. The user should be able to assign an emergency call to an ambulance. When
an ambulance is responding to a call the colour with which it is represented on the map
display should change, as should its appearance on the list (e.g. through the use of a red
background behind the identification number).

There should be a separate system on-board each ambulance which can interface to
an existing gps navigation system. This on-board system should also interface with the
software in the control room. In particular, it must relay its location (as measured from
the gps) to the control room software and should accept emergency assignments from that
software. When an assignment is received, it should assign the location of the emergency
as the destination in the gps navigation system which provides turn-by-turn instructions

to the driver.

Using good design principles, draw a UML class diagram which shows the main
classes that will be needed for this software, the relationships between these classes and
the main attributes and operations that they should support. Identify any classes which
have to expose an external interface to a network and show the CORBA id1 that would
be needed to describe this. You do not need to give any pseudocode in your answer.

(cont.

[20%]

[55%]

5

(¢) The ambulance authority now wishes to extend the software to allow
emergencies to be prioritised and to integrate the system with scheduled activities (such
as carrying patients to outpatient clinics).

Show what changes will be required to the software in order to support this
additional functionality, drawing any modified parts of your class diagram and identifying

any design patterns used. [25%]

(TURN OVER

6

3 Figure 1 shows a UML class diagram for software which plays music on a portable

player.

(a) Identify the classes present and the relationships between them. You do not
need to describe any attributes or operations. Identify any design patterns that are present.

(b) Draw a sequence diagram showing what happens when the update()
function is called on the CurrentlyPlaying object in the case when the current track
has come to an end and there are unplayed tracks in the queue.

(¢) The software must now be modified to allow two additional pieces of

functionality:

(i) The user should be able to play internet radio stations. These radio
stations offer a network interface using the following CORBA idl

interface RadioSation {

void stream_audio();

string name();

string current_track();
h

The radio stations should appear in the library like normal tracks, but

when one is played, the display should show the name of the radio station
followed by the name of the track.

(ii) The user should be able to create and play playlists. These should also
appear in the library like normal tracks, but when a playlist is playing, the
display should show the name of the current playlist before the name, artist
and time remaining for the specific track currently playing from the list.

Show what changes will be required to the software in order to support this
additional functionality, drawing any modified parts of the class diagram and identifying

any design patterns used.

(cont.

[25%]

[25%]

[50%]

mode display
DisplayMode [< T 1) Display
run{) show(s:string)
update () change_mode (next :DisplayMode*)
run(} { // changes the display mode on the devigi
once per second until destroyed { // The argument is the display mode
update () ; // to switch to
}
} change_mode (DisplayMode* next) {
delete mode;
mode = next;
mode->run();
}
1 1 " 1
— TrackBrowser > Library
update () %
N ueue N 1 *
CurrentlyPlaying n 9 1\ Queue < > Track
Name: string
update () add (t:Track) Artist: string
remove (t:Track)
now_playing(): Track play ()
num_tracks(): int time_remaining()
[AN
update() {

// check to see if the track has finished
if (queue->now_playing{) .time_remaining{}==0) {
// if so remove the finished track
queue->remove (queue->now_playing) ;
// if there are more tracks to play
if (queue->num_tracks() > 0){
// then play the next one
queue->now_playing()->play();

// update the display

string s;

s = queue.now_playing().Name;

s+": "+queue.now_playing().Artist;
s = s+":
display->show(s);

s =

"+queue,.now_playing().time_remaining()

Fig. 1

(TURN OVER

4 An aircraft manufacturer is developing a new system to control and monitor the
flaps on a new high-performance wing. The flaps are moved by electrical actuators, and it
is vital for safe take-off and landing that their position is always set and known. Intelligent
monitoring of the system will reduce maintenance costs and time. A top-down analysis
has already identified three major subsystems:

1) The command and control system for the flaps, which interfaces to the existing flight
controls and displays in the cockpit.

2) The monitoring and data storage system to record flap movements, actuator loads, etc.
3) A maintenance and condition monitoring system for use by technicians, which will run

on a laptop computer connected to the data store during servicing. Trends, counts and
out-of-band errors will be displayed and manipulated.

(@) Formal methods and prototyping are two very different approaches to
software design. For each, identify one of the subsystems where the approach would
be suitable and discuss why.

b @ Describe three techniques for fault minimisation during
development which could be applied to this project.
(ii) Critical parts of the command and control subsystem must be tolerent
to remaining faults. Describe how N-version programming provides fault
tolerance.

(iii) 'What steps could be taken during design, implementation and testing to
maximise the advantages of N-version programming?

(¢c) Discuss the considerations which govern the design of user interaction
and information presentation in relation to the maintenance and condition monitoring
interface. How can the software engineers ensure that the interface meets the needs of the

technicians who will use it?

END OF PAPER

[20%]

[50%]

[30%]

