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SECTION ANSWERS

1 (a) Utility theory is useful in case where we are not only interested in the expected
payoff but also in the distribution of the yields. It allows a decision maker to incorporate
his risk preferences into the decision making process.

The utility is a function U (x) that ranks each possible yield in the payoff set. Given
two random yields Y; and Y», a decision maker prefers Y} to Y5, if and only if the expected
utility of Yj is larger than the expected utility of Y5.
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The form of the utility function U(x) defines the risk preference of the decision

maker.

(b)
*Given yields y; with associated probabilities p; the Expected Mornetary Value
(EMV) is given by
EMV =Y yip;
i
*A risk neutral investment strategy is indifferent between payouts with the
same EMYV, irrespective of risk.

*The CARA - constant absolute risk aversion utility is of the form
Ux)=1-e%

{or a linear transformation of this). a is the constant of absolute risk aversion.

(c) The insurance risk premium f is the amount that a risk-averse decision maker
would be willing to pay in order to avoid a fair gamble with mean 4.

P is related to the utility and the variance of the yields by

B~ ——;gl (%) Var(Y)
(@ _
U(E(Y)) =U(p) = —e~o
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For E(U(Y)) we need to know the distribution. Since the distribution is normal, the

density function is
- (y - [.l) 2 )

1

Thus

o ) oo T Y
EU(Y)) = / _Ubpb)dy = / - ﬁ;?em(—au— (y2 0‘2‘) )dy

—00

Using the Hint with A = 1/1/(206?),B = —u/+/(262),C = —a, this expression becomes

a?
EQU(Y)) = —exp(-ap + )

(e) Since B satisfies
E(U(Y))=U (s - B)

we find 5
a
—exp(—ap + %5) = —exp(—ap +apf)

ie.
2

(f)  The approximation gives

B~ laze—au o2 = ao” ,

2 ae—9H

which is exactly what we found above.
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2 (a)
*Simple queuing systems are conventionally labelled by
U/V/s/x/W
—U and V denote the inter-arrival and service time distributions.
~s is the number of servers
~K is the system capacity.
-W is the queuing protocol or discipline.
x and W are optional with default values k = co and W = FIFO.

*Imagine a G/G/s queue with arrival rate A and service rate y1. The utilization

factor (or traffic intensity) p is defined by
A
p= K
The interpretation of this is that p is the fraction of time we expect the service
facility to be busy.
If p > 1 then the queue explodes, i.e. the number of people in the queue tends
to infinity as ¢ — oo.

*Exponential arrival times are often used because it is reasonable to assume
that arrival times are memoryless. The probability that a new customer will
arrive in the next 10 minutes, say, is independent of whether there has been a
customer in the 10 minutes before that or not.

*The state N(z) of a queuing system at time # is the number of customers in the
system (i.e in the queue or in service) at time ¢. The system is said to be in a
steady state if P(N(¢) = n) does not change with ¢ anymore.

*Little’s formula says that the average number of customers L in any steady
state system (over some time interval) is equal to their average arrival rate, A,
multiplied by their average time in the system W.

L=AW
®) @) This is the queue length L, = ¥'2_, p(i +2)i = 0.85.
(i) Customers are turned away if the queue is full, ie. n=35. The

probability of this is 0.1.
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(1) Use Little’s formula. The expected number of callers in the system is
L=25.Since A =4, W =2.5/4 = 0.625 hours.

(i) W =Wy+ g, thus L=L,+% Hence

& =L~Lg=25-0.85=1.65.

u

and 1
=— =0.825

(v) This is equivalent to (1 - the percentage of time that they are not busy),

i.e. (1- the utilization faction) = 1-0.825 = 0.175.

(vi) They are both off the phone if there are no customers in the system, i.e.

n = 0. The probablility of this is 0.1.



(b)
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(i) NO - The car never drives back to where it came from, hence it is not
memoryless.

(i1) NO - For the same reason.

(iii) YES - The car has no memory of where it came from.

(iv) NO - The car needs to remember the last junction it came from, hence
it is not memoryless.

(v)  YES - The probability changes depending on what is NORTH, which is
a parameter of the system, not the past history of the car.

(1) A matrix P is stochastic if every row is a distribution, i.e.
V< p;j<i
*Xjpij=1

M is stochastic.

(i) Label the points by {a,b,c,d,e, f}.

There are two - classes {a,b,c,e,f} and {d}. The first one is

absorbing/closed.
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(i) gqM?=(3/8,0,1/4,0,3/8,0)

(iv) uM =u gives us the following solution
ucx(9,8,12,0,6,8)

Since u needs to be a distribution the u; need to sum to 1. We can achieve this

by dividing the above by 43
u= 1(98 12,0,6,8)
13 -2 ? b ) )

u is the limiting distribution because the matrix M is not periodic.

(v) The expected return time for state d is oo. The return time for any other

state is L, thus the shortest return time is % for state c.

u;?



4 (a)

12

In order to find the parameters a and & that minimize the sum of squared errors

(SSE) ¥i(a+bx; — yi)zwe need to differentiate the SSE with respect to the parameters a
and b. Setting 95 - 95~ gives us the minimum of the SSE.

da — Jb

gives

and

as
ab

gives

Thus we find

(b)

s

da

ZZ(a +bx;—y;)) =0
i

=3 2(a+bx;—y;)x; =0
i

0= (F+bxi—yi)x;
i

Z()’i —J)xi = be,-z

_ Lixi

b= Yixt

The expected value E(y;) = a + BE(x;). Thus

E(a)=EQG)=a+BERF =«

and

E(p)

©

Y x(EG) —E®@))
Yix?
Y xi((a+ Bx;) — (a+ Bx))
Yix?
Y xi(x; —%)
B yix?
B M

The distributions for a and b are normal with mean « and 8 respectively. If

we believe that our model is correct, then the observations y; have been generated by
yi = a + Bx; + & where all the ¢&; are independently drawn from the same distribution.
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We can therefore rewrite the expression for the slope as

Yixi(a +ﬁxz + &) YiXi€
b= = Lt
Zl ﬁ N thlz

Define Sxyx = Z,-xiz. According to the central limit theorem, when n is large enough, b
has a normal distribution with mean B and variance GZ/SXX where o2 is the unknown

variance of the g for all i.
_ 52
b~N|B,—
Sxx

g = | Lm0 ~9i)*
¢ n—2
1s an unbiased estimator for the parameter ©.

The standard error

(d)
(&—B)VSxx

~iy
Se n—-2
~ We can look up the values from a ¢-distribution to give us confidence intervals for . A
100(1 - ¥)% confidence interval can be constructed by

[b—t,_2(7/2)0p, b+ 1n_2(¥/2) 0]

where 0}, = \/—%;_; and #,(y) is defined by P(T > 1,(y)) = 7.

(e) A prediction interval gives a confidence interval that for a given value of x the
y value lies in a certain range about the predicted value.

We have y = a+bx+ € =y+ bx+ €. Thus

Var(y) = Var(y_) +x2Var(b) + Var(e)

= —+x2———+o'
Sxx

= (1+1+i) o2
Sxx

and since S, is an unbiased estimator for ¢ we find the standard deviation of y by

Gy(x)=\/1+; (= X)Z Se

Sxx
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A 100(1 — 7)% prediction interval can thus be constructed by

W‘“ tn-2(7/2)0.}’>5’\+tn—2(7/2)GY]
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