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1 (2) Inadigital communication system random bits are transmitted as a Bernoulli
random process, that is, each time point is independently assigned a value of +1 or -1 with
equal probabilities of 0.5 . A possible sequence of bits generated from the process is, for
example:

{bn}={..,—L,+1,+1,-1,4+1,+1,...}

Explain intuitively the meaning of stationarity for a discrete time random process.
Define wide-sense stationarity. Show that the above random process is wide sense
stationary.

Solution:

Stationarity means that the statistical characteristics of the process do not change
with time. Intuitively, if you observe a process starting at a particular time then there
would be no difference in the characteristics of an observation started at an entirely
different time.

Wide sense stationarity: A random process is wide-sense stationary (WSS) if:

() U = E[Xyn) = U, (mean is constant)

() rxx([n,m| = rxx[m— n], (autocorrelation function depends only upon
the difference between n and m).

(iii) The variance of the process is finite:
E[(Xn— .u)z] <o

Wide-sense stationarity for a random process

For Bernoulli process:
(i) E[Xn)=0.5%x—1%0.5% —1 =0, (mean is constant)

() ryx[n,m] = E[XuXn] = E[Xy|E[Xm] = 0 for m # n, since process is
independent. ryx [n,n] = 0.5% (1)24+0.5%(—1)2 =1

(iii) The variance of the process is finite:
E[(Xa~p)’]=1<eo

Hence wide-sense stationary.

(b) Inthe communications channel the bits are distorted according to a FIR filter,

1
Xp = Z Cibn—i
i=0
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where ¢g = 1 and ¢; = 0.1. Determine the cross-correlation function between {b,} and

{xn}, and also the autocorrelation function of {x,}. [40%]

Solution:

1

i=0
1
= Z ciE[brbnm—i)
i=0
1
= Z CiE[bnbpim—i
i=0
cp, m=0
=45C, m= 1

0, otherwise

[i.e. the filter coefficients themselves]

1 1
E[xnxn+m] = E[Z cibn—i Z cjbn+m—j]
=0 =0

1 1
= Z Z CiCjE[bn—ibn+m—j]
i=0 j=0

1
= Z CiCm—i
=0

=..0,0.11.01,0.1,0,...

[i.e. the convolution of the filter impulse responses]

(c) Itis desired to optimally estimate the bit sequence {by } from the channel data
{xn}. Design the second order FIR Wiener filter for this task, i.e. form an estimate of the

type:

1
bp= Z hixp—i
i=0
where A and A1 are to be determined according to the Wiener criterion. [30%]

Solution:
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Require to minimise:

E[(bn - [A?n)z] = E[(bn - é)hixn—i)z]

= E[(bn —hTxn)?]
= E[b2] + W E[x,x] b — 2E[b,hT x,)
Differentiate wrt h and equate to zero:
hence
h= R;ll‘bx
In this case:

1.01 0.1
Rx = E[ang] = |: }

0.1 1.01

Tpx = ElbnXp] = [0%1]

and

0.99
0.001

h:R;lrbx: l:

2  (a) Describe the principal means for reduction of errors in fixed precision digital
filter implementations. Your description should include a discussion of overflow, limit
cycles, saturation arithmetic and scaling. [30%]

Solution:

Bookwork - describe overflow and the use of saturation arithmetic to ensure that
wrap around does not occur. Also, briefly describe the three main types of scaling (11, 12,
frequency-response), plus the occurrence of limit cycles.

(b) AnIIR digital filter has the following transfer function:

1-0.6z71

1-0.9z71

The filter is to be implemented in direct form using 16-bit fixed point arithmetic.
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(i) Determine appropriate scalings to ensure overflow does not occur when
the input signals are sine waves and sketch this implementation.

Solution:

For sine-wave inputs, require frequency response scaling.

Consider first stage (all-pole) section:

1

Hp) = ——
@) =150

which has a pole at z = 0.9.
Now, frequency response is:

1
1 —0.9exp(—jR)

H(exp(jQ)) =

which clearly has maximum magnitude when Q = 0 and a value of 1/(1 —
0.9) = 10.

Hence the input should be scaled by a factor of 1/10 (or 1/16 if binary
shifting used). This ensures the internal signal does not overflow.

Now, consider the entire filter, including the scaling just computed (use
1710 - 1/16 also acceptable):

1—-0.6z71

H(z)=0.1
(2) 1-0.9z-1

This has in addition a zero at 0.6. Thus overall the response is still at a

maximum when Q = 0, when the gain is 0.1*0.4/0.1=0.4. Hence can scale the

two FIR coefficients by 1/0.4=2.5 without overflow, resulting in [2.5 — 1.5].
Sketch:

The input signal is assumed bounded between -1 and +1 and and overflow occurs if the
magnitude of the output or the internal signal exceeds 1. [30%]
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(c) If the input to the above filter, with a scaling calculated as in part (b)(ii) above,
is Gaussian white noise with variance equal to 10, determine:

@

(i)

(iii)

the mean value at the output of the filter
Solution:

E [Xn] = E[Ly hmXn-m] =0

the power spectrum at the output of the filter,
Solution:

Power spectrum is:

(11 —0.6exp(—jQ)[»)
[1—0.9exp(—jQ)[2

the mean-squared signal value at the output of the filter, and hence

Sx (exp(jQ)) = 10x0.25

Solution:
The impulse response (including the scaling of 0.25) is:

B =0.25(0.9" — H(n—1) %0.6% (0.9)* 1)

and the sum of squares is:

(iv)

Y 2 =0.25%(1+0.3%(1/(1 - 0.81))) = 0.0921
n
Average Power (mean-sqaured value) at output is:
El] = Yol
n
=0.0921%10=10.921

the probability that overflow occurs at any given sample time (assuming

that the effects of any previous overflows have died away).

Solution: Output is a zero mean Gaussian random variable with

variance 0.921. Hence probability of overfiow is:

o 1
2 / o exp(—1/2%0.921x)dx = 2% (1 ~ 0.8612) = 0.28
* i Jamooar oR(T1/2x0.921x%)dx =2 )

(from tables).

[40%]
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3 (a) Describe the steps involved in the window method of digital filter design.
Explain its advantages and drawbacks when compared with the bilinear transform method
of design.

Solution:

There are 5 steps in the window design method for FIR filters:

Select a suitable window function. Specify an ’ideal’ response D(Q). Compute
the coefficients of the SidealT filter by inverse DTFT. Multiply and truncate the ideal
coefficients by the window function to give the filter coefficients. Evaluate the frequency
response of the resulting filter, and iterate if necessary to get the desired response.

Advantages: stable FIR filter, simple to design, doesn’t warp frequency axis,
generates linear phase.

Disadvantages: not optimal design, iterative, can’t guarantee particular performance
in various bands (stop band atten., pass band atten, etc.). &

(b) Itis desired to design a lowpass digital filter having frequency response D(Q).
The ideal impulse response of the filter, dy, is determined as the inverse DTFT of D(Q2):
1 +n
dy= — / D(Q) exp(-+jQn)dQ
2w J—x
If dj, is truncated by multiplication with a finite duration window function wy, show that
the resulting filter’s frequency response is
Du(@) =5 [* D)W (exp(j(@~ 1)) dA
TJ—x
where W (exp(jQ)) is the DTFT of the window function. Use this formula to explain
qualitatively the effect on the filter’s frequency response of truncating the ideal impulse
response in this way.
Solution:

Take the DTFT of the windowed response d,, = w,dj, directly:

Dw(eij) = Z {ann}e_jan
=00
*® 1 /2% . . .
= Y dn{—— / W(efe)efnede}e—J”wT
1 r= . 0 .
= ﬁ/o W (el Y xpe— i @T=9) g9
n=-—0c0
. 1 2m . o
Dy (e/°T) = > /0 W (/%) D(e/(©T—6)) g0
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We see that the spectrum of the windowed signal is the convolution of the infinite
duration signal spectrum and the window spectrum.

(¢) Instead of calculating dy, exactly using the inverse DTFT as above, the
coefficients are estimated using the inverse DFT of a sampled version of D(Q), as follows:

. 1N somp j2mnp
=y 5,0 () == (5)

Show that the resulting coefficients are related to the ideal coefficients by the following

result:
A +°°
dn = Z dp—mn
m=—oo

Explain how to reduce the effects of this approximation in a practical implementation of
the window method of filter design.

Solution:
= L5 0 (222 xp(2222)
Np=0 N N
LN e 27 278
-5 5, L v (-in(5F) ) (572)
1 ot A 2np(n—m
== Z dmZexp<-————)
1 =
=5 Y duN8[n—m—knN)
m=-—o0
= Z dy
m:n—m=kN
~-o0
= Y doin
koo

as required (using result below for summation).
This error may be reduced by increasing the number of points in the DFT using zero
padding, hence reducing overlap between the repetitions of d,,_xy.

[You may use the following result, which applies for integers m and k:

N-1 , N, form=kN
Z exp(j2nmp/N) =
p=0 0  otherwise
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4 Assume you want to build an automatic berry classification machine which, based
on the measured weight of the berry, x, classifies it into one of three classes, “Strawberry”,
“Raspberry” and “Cranberry”, denoted Y = s,Y = r and Y = ¢ respectively. Your goal is
to compute P(Y|x). Assume that P(Y =s) =0.5, P(Y =r) =0.3 and P(Y =¢) =0.2,
which are obtained by measuring the observed frequencies of these berries.

(a) We assume that P(x|Y = s) is Gaussian with mean 4 and variance 1; P(x|Y =
r) is Gaussian with mean 2 and variance 1; and P(x|Y = c) is Gaussian with mean 1 and
variance 1. Compute the region of x for which the Raspberry class is more probable than
the other two classes given x. Show all working, and sketch P(Y = r|x). [30%]

Solution:

P(Y = i|x) < P(x)p(x|Y =)
= N(x|u;, 03)P;

Need to find place where:
0.2exp(—1/2(x; — 1)?) = 0.3exp(—~1/2(x; — 2)?)

i.e., solving,

x; = 1.0945
Similarly for right hand edge:

0.3exp(—1/2(x,—2)?) = 0.5exp(—1/2(x, —4)?)

giving,
Xpr = 274
Version 2 - 29 May 2007 (TURN OVER for continuation of Question 4
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(b) Given the following data set of 6 points and their class labels:
2 ={(1.0,¢),(2.1,¢),(1.0,r),(3.0,r),(2.0,5), (4.0,5) },

find the maximum likelihood parameter estimates of the means and variances of
Gaussians fitting each class. [30%]
Solution:
Need p(x]Y = i) = N(1, 61-2).
Take e.g. class c:

Y 1og(p(lt =c)) = ~log(2mw6Z) = 0.5(1 - pe)?/ 07 —0.5(2 — pe)? /7

Take derivative wrt U :

dlog(p(x¥ = <))
dle

= (1~ pe)/ 02 + (2~ pic)/ o2

Equate to zero:
3241, =0, fic=3/2

Similarly for 62:

8log(pgzl2Y =D 1)(62) 4+ (0.5(1 — o) +0.5(2 — re)2)) /(62

Equate to zero and solve:
62 =0.5(1— pe)? +0.5(2— 1)%) =025

Similarly for the others:

wr=2,062=1,p=302=1
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(¢) Consider the problem of finding the means of the above 3 Gaussians which
maximise the probability of the observed classes for the data set 2. The parameters of
this model are 0 = (i, U, U ). Assume the variances are all set to one, and the observed
class frequencies are set to 1y = 0.5, 7, = 0.3, m, = 0.2 as above. We can write

Tye™ (x—#Y)z/Z

P(Y|x,0) =
(1 0) fige= (K2 /2 4 o= (x= 1) /2 4 o= (x—He)? /2

and our goal is to maximize the probability of the observed classes for the above data set
2. Describe a method or algorithm for doing this. Would this algorithm give the same
means as in part (b) of this question? Explain.

Solution:
Compute L(8) = H161=1 P(yn|xn,0) and find the derivative -g—lé, then use gradient
ascent:

JdL
Orr1 =6 +Na_é

Would not give same result in general as (b) since we are maximising a different
quantity - the probability of getting a correct label rather than the probability of X for
each class.

END OF PAPER
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