ENGINEERING TRIPOS PART IIA
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Module 3C5

DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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1 A symmetrical rotor of mass m shown in Fig. 1 has principal moments of intertia
AAC about axes passing through the fixed pivot O. The distance from O to the centre
of mass G of the rotor is a . The rotor is spinning at a steady rate @ and is held with
its axis vertical, as shown in Fig. 1(a). It is known that if @w<a.y , where

a)cr-lt2 = 4”;—‘?2614 , then the rotor will not remain stably upright when it is released.

In a particular experiment the slow-spinning rotor is spining with @ = @ /2 . When

released the rotor inclination angle & increases until it reaches a maximum value 6 g

as shown in Fig. 1(b). The : a;gﬁﬁ“mWM&tMMumﬂmaW
continue, a motioaflm/i’lrar to that observed of the gyro-pendulum in the 3C5 laboratory,

finally dying out to give steady precession at €= @, as shown in Fig. 1(c).

(a) Show that the rate of spin @ is constant throughout the motion. [10%]

(b) Show that moment of momentum of the rotor about the vertical axis through
O remains constant at a value of C@ throughout the motion. [10%]

(c) Show that the angle 8 fjna =% and find the final precession rate. [40%]

(d) Find 6. assuming mechanical energy is conserved during early motion.  [40%]
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2 A solid uniform rotor of mass m has a square cross section of side a and has
length L. A light rigid shaft passes through the centre of the rotor. The angle between
the shaft and the long axis of the rotor is @ as shown in Fig. 2. The shaft is constrained
to rotate in fixed bearings at a constant angular velocity £2.

(a) Find the principal moments of inertia of the rotor. [10%]

(b) Find the components of angular velocity in a reference frame i, j, k aligned
with the principal axes of the rotor and hence find the moment of momentum of the
rotor both
(1) inthe framei,j, k
and (ii) in areference frame I, J, K aligned with K parallel to the shaft.
Use this result to find one of the products of inertia for the rotor in frame I, J, K. [50%]

(c) Find an expression for the magnitude of the couple @Q acting on the shaft
through its bearings. [30%]

(d) For what value of L is the value of Q equal to zero? [10%]

Fig. 2
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3 A thin coin of mass m and radius a is wobbling on a horizontal table as shown
in Fig. 3. The motion can be analysed by assuming it to be in steady state with the
centre of the coin G at rest. The coin is in contact with the table at point P where it rolls
without slip. The motion of the coin is described by Euler angles 8 , ¢ and . Unit
vectors i, j, k (not fixed in the body) are defined in the figure. The unit vector j is
always horizontal.

(a) Draw a free-body diagram of the coin and hence find a vector expression for
the couple acting on the coin. [10%]

(b) Find g§, the steady rate of wobbling of the coin. [50%]

(¢) Find an expression for the rate of turning of the head of the coin as viewed
from above. Make suitable approximations for small 6. [40%]

elevation

Fig. 3
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4 A two degree of freedom system shown in Fig. 4 comprises a simple pendulum of
mass m; and length L connected to a mass on a spring. The mass-spring system has
mass m; and spring stiffness k. The system moves in a vertical plane, and the degrees
of freedom are taken to be the rotation & of the pendulum and the vertical
displacement x of the mass m;. The acceleration due to gravity is g.

(a) Show that the kinetic energy of the system is given by
T= -;-{(m1 +mp )i +my (L292 ~2Li@sin 9)}

and find also an expression for the potential energy of the system. [20%]

(b) By using Lagrange’s equation derive the equations of motion of the system.
Do not assume that the rotation & is small at this stage. [40%]

(c) Assume now that both # and x are small and hence find from your
answers to (b) the linear equations of motion which govern small amplitude free
vibrations of the system. . [20%]

(d) Show that the same equations can be derived directly from part (a). [20%]

Fig. 4
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5  An articulated tower of length L is used as an offshore mooring terminal as
shown in Fig. 5. The tower is pivoted at the seabed and has moment of inertia / about
the pivot. The combined effect of gravity and buoyancy is to produce a constant
upwards force P acting at the centre of the tower. Incoming waves produce a
horizontal time varying force F() acting at the centre of the tower. The tower moves in
the vertical plane and has a single degree of freedom which can be taken to be either the
rotation of the tower @ or the horizontal displacement of the top of the tower x.

(a) Taking the degree of freedom to be x, show that the kinetic energy T of the
tower and the generalized force Q (due to P and F) are given by

L2 xP F
+ ——

T Q=
212 - x2) W2 —x2 2

and explain why the potential energy V = 0 throughout the motion.

(b) By using Lagrange’s equation derive the equation of motion that governs x.
Hence show that the natural frequency of small oscillations of the tower is v LP/2I .

(¢) Now take the degree of freedom to be 8. Find new expressions for T and
Q . Use Lagrange’s equation again to find the equation that governs &. Show that this
can be derived from the equation for x by making the substitution x = Lsin@ .

J

Fig. 5

END OF PAPER
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Part ITA Data sheet S32
Module 3C5 Dynamics
Module 3Cé6é Vibration

Dynamics in three dimensions

Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

dp _

- G =Fe

where p = M vg, M is the total mass, vg is the velocity of the centre of mass and F () the

total external force applied to the system.
(b) Moment of momentum about a general point P
Q® =(rg-rp)xp +hg

=hp+FpXp
where Q(®) is the total moment of external forces about P. Here, Ap and A are the
moments of momentum about P and G respectively, so that for example

hp= Z(rz - rp) X m;r
i

=hg+ (@G ~rp) Xp
where the summation is over all the mass particles making up the system.

(c) For arigid body rotating with angular velocity @ about a fixed point P at the origin of
coordinates

hp= [rx (@xrydm = I

where the integral is taken over the volume of the body, and where

A -F -E Wx x
SEL S I I
E - Z
W,
and A= _[(y2 +z2)dm B= J.(z2 +x2)dm C= _[ (2 + y2)dm
D=_[yzdm E=Iudm F=|xydm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity 2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

P+ 2xp=F@
where the time derivative is evaluated in the moving reference frame.

When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes. -
Application of the general formula needs an extra term unless the origin of the frame is
fixed.
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Ad-B-C)ammas = Q
Ban-(C-A)asan = Oy
Can-(A-Byoyap = Q03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is 0= [y, @, @3] and
the moment about P of external forces is Q = [Q1, 0o, O3] using axes aligned with the
principal axes of inertia of the body at P.
(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
A -A%-Co) 2 = Q
AR+AB-Con) = 0
Can = 03
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [@;, @y, @3] and
the moment about P of external forces is @ = [Q1, 02, O3] using axes such that w3 and
Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed in the
body) rotates with angular velocity Q= [€2, £, 3] with Q=@ and =w;.

Lagrange’s equations
For a holonomic system with generalised coordinates g;

dr| or oV
R

where T is the total kinetic energy, V is the total potential energy, and ; are the non-
conservative generalised forces.

Rayleigh’s principle for small vibrations
3
K

The “Rayleigh quotient” for a discrete system is% = —gt—i where g is the vector of

aMgq
generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent
- quantity for a continuous system is defined using the energy expressions on p3.

If this quantity is evaluated with any vector g, the result will be

(1) =the smallest squared frequency;
(2) <the largest squared frequency;

(3) a good approximation to wy? if gis an approximation to g(k) .

(Formally, -;—is stationary near each mode.)

3C5/ 3C6 data sheet 2 HEMH/RSL/DC/JW 2003



VIBRATION MODES AND RESPONSE

Discrete systems
1. 'The natural frequencies @,, and

corresponding mode shape vectors g(”)
satisfy

() — 2 (n)
Ku™ =@, “Mu"

where the M (mass matrix) and K (stiffness
matrix) are both symmetric and positive
definite.

2. Kinetic energy

7=lima
2

3. Orthogonality and normalisation

E(j)tMu(k)z 0, ];&k
EUEN =k
Z(f)t[(g(k):—_{ 0 =k
w,, j=k

4. General response

The general response of the system can be
written as a sum of modal responses

g(t) =Y a,(t) u™
n

where q is the vector of generalised
coordinates and a,, gives the “amount” of the
nth mode.

5. Transfer function

For (generalised) force F at frequency o,
applied at point (or generalised coordinate) j,
and response ¢ measured at point (or
generalised coordinate) k the transfer
function is
w (M, (n)

H ( Js k a) = .q_. = Z._J__ﬂ‘__

F w2 — w*

(with no damping), or

3C5 / 3C6 data sheet

Continuous systems

The natural frequencies ®@,, and mode shapes
uy, (x) are found by solving the appropriate

differential equation (see p5) and boundary
conditions, assuming harmonic time
dependence.

T=%_[z'¢2dm

where the integral is with respect to mass
(similar to moments and products of inertia).

0, j#k

_[uj(X) ug(x)dm ={1, =k

The general response of the system can be
written as a sum of modal responses

W(x,1) =Y @y (t) un(x)
n

where w(x,?) is the displacement and a,,
gives the “amount” of the nth mode.

For force F at frequency w applied at point
x, and response w measured at point y, the
transfer function is

H(x y, Zun(x) un()’)

(with no damping), or

HEMH/RSL/DC/IW 2003
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H(j,k, a))- 2
(with small dampmg) where the damping
factor {, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

w,? +2i00,l, - v®

6. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor u, "y,

has the same sign for two adjacent resonances
then the transfer function will have an
antiresonance between the two peaks. If it
has opposite sign, there will be no
antiresonance.

7. Impulse response

For a unit impulse applied at = 0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

(n)y, (n)
u A
glikt)=Y “ sin Wyt

n O
(with no damping), or

(n)y, (n)
u -

g(jvk, t) = Z—J_—Ii&— sin wnt € wngnt

n Dy
(with small damping).

8. Step response

For a unit step force applied at =0 at point
(or generalised coordinate) j, the response at
point (or generalised coordinate) k is

h(j.k.t) Zu My () [1- cos 1]

(with no dampmg), or

h(j.k.1) = Zu j(")uk(") [1 — COS Wyt &~ @nbnt ]
n

(with small damping).

3CS / 3C6 data sheet

Uy (X) ()
W,2 + 2iow,E, ~

)

(with small dampmg) where the damping
factor {, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

H(x,y,») >

For a system with low modal overlap, if the
factor u,(x) u,(y) has the same sign for two
adjacent resonances then the transfer function
will have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.

For a unit impulse applied at ¢ = 0 at point x,
the response at point y is

sin ¢

u,(x)u
g(x,y,t) =z (%) Uy ()
n n

(with no damping), or
glx, 1) = ZM sin @, ¢~ Onbnt
0]

n n

(with small damping).

For a unit step force applied at ¢ = 0 at point
x, the response atpointy is

h(x,y,t) 2%@)(»1 Cos W,t]

(with no dampmg), or

h(t) = Zun (%) uy () [1 —COS Wyt o~ Pnbnt ]

n

(with small damping).
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Governing equations for continuous systems
Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,?), applied lateral force
S(x,?) per unit length. '

Equation of motion Potential energy Kinetic energy

FPw_,Pw 1 (8w 2 I (07w)2

————P = f(x,t V==P|| —| dx T==—m||—| dx
"o I 2IaxJ "o

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius a, internal radius & if shaft is hollow, angular
displacement 6(x,t), applied torque f(x,?) per unit length.

Polar moment of area is J = (& / 2)(a4 - b4).

Equation of motion Potential energy Kinetic energy
%6 92 ! (ae 2 1 (99)2
J———GJ = t V==GJ||—| ax T==pJ|| =—| dx

P or o0 2 Iax] 2pJ or

Axial vibration of a rod or column

Young’s modulus E, density p, cross-sectional area A, axial displacement w(x,t), applied
axial force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
*w 072w | (8w 2 1 ( ow )2
A-— FA—5-= t V==FEA|| —| dx T=—pAl| —| ax
PG B =T 2 Iax] Al

Bending vibration of an Euler beam

Young’s modulus E, density p, cross-sectional area A, second moment of area of cross-
section I, transverse displacement w(x,?), applied transverse force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2
Pw  ordtw 1 of Pw 1 (8w)
T = f(x.t V=—El|| —| d&x T=—pA||—| dx
PA= -+ Bl = f(x.) E| 52 SPAl| 5,

Note that values of I can be found in the Mechanics Data Book.
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Answers

mga Co

d 120°
A4 4 @

m(a+LA/12, m(a®+L>/12, ma*l6

0=0i-(Xinfdj+ xosOk

(i)  h=-AXingj+ ClxosOk

(i)  h=(C-A)X0sOsindJ+ (AKin*0+ C{xos’0) K
product of inertia = — (C — A)cos 8 sinf

01 = (4~ O)§XcosBsinb

L=a

, g
= é by 2 =
Q =-mga cosbj (b) 2tand ©

V =1k0> —m gx—m,g(x— L(1-cos®))

(m, +m,)i—m,LOsin @ —m,LO” sin@cos @ + kx — (m, +m,)g =0
L6 -5%sin@+gsind =0

(m, +m)X+kx=(m +m,g

LO+gh=0
m+m, 0 k0
M= a K =
0 m,L 0 m,gL
)i Litx F Px

+ =——
-x* (P-x) 2 2fP-y
T::%Iéz 0= FL(;OS@ _PL521m9
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